Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T16:15:51.455Z Has data issue: false hasContentIssue false

Eddies and interface deformations induced by optical streaming

Published online by Cambridge University Press:  18 October 2011

H. Chraibi*
Affiliation:
Université de Bordeaux, LOMA, CNRS UMR 5798, F-33400 Talence, France
R. Wunenburger
Affiliation:
Université de Bordeaux, LOMA, CNRS UMR 5798, F-33400 Talence, France
D. Lasseux
Affiliation:
Université de Bordeaux, I2M, CNRS UMR 5295, F-33600 Pessac, France
J. Petit
Affiliation:
Université de Bordeaux, LOMA, CNRS UMR 5798, F-33400 Talence, France
J.-P. Delville
Affiliation:
Université de Bordeaux, LOMA, CNRS UMR 5798, F-33400 Talence, France
*
Email address for correspondence: [email protected]

Abstract

We study flows and interface deformations produced by the scattering of a laser beam propagating through non-absorbing turbid fluids. Light scattering produces a force density resulting from the transfer of linear momentum from the laser to the scatterers. The flow induced in the direction of the beam propagation, called ‘optical streaming’, is also able to deform the interface separating the two liquid phases and to produce wide humps. The viscous flow taking place in these two liquid layers is solved analytically, in one of the two liquid layers with a stream function formulation, as well as numerically in both fluids using a boundary integral element method. Quantitative comparisons are shown between the numerical and analytical flow patterns. Moreover, we present predictive simulations regarding the effects of the geometry, of the scattering strength and of the viscosities, on both the flow pattern and the deformation of the interface. Finally, theoretical arguments are put forth to explain the robustness of the emergence of secondary flows in a two-layer fluid system.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bakr, A. A. 1986 The Boundary Integral Equation Method in Axisymmetric Stress Analysis Problems. Lecture Notes in Engineering , Springer.CrossRefGoogle Scholar
2. Baroud, C. N., Okkels, F., Ménétrier, L. & Tabeling, P. 2003 Reaction–diffusion dynamics: confrontation between theory and experiment in a microfluidic reactor. Phys. Rev. E 67, 060104.CrossRefGoogle Scholar
3. Binks, B. P., Cho, W.-G., Fletcher, P. D. I. & Petsev, D. N. 2000 Stability of oil-in-water emulsions in a low interfacial tension system. Langmuir 16, 10251034.CrossRefGoogle Scholar
4. Casner, A. & Delville, J.-P. 2001 Giant deformations of a liquid–liquid interface induced by the optical radiation pressure. Phys. Rev. Lett. 87, 054503.CrossRefGoogle ScholarPubMed
5. Casner, A., Delville, J.-P. & Brevik, I. 2003 Asymmetric optical radiation pressure effects on liquid interfaces under intense illumination. J. Opt. Soc. Am. B 20, 23552362.CrossRefGoogle Scholar
6. Chraibi, H., Lasseux, D., Arquis, E., Wunenburger, R. & Delville, J.-P. 2008a Simulation of an optically induced asymmetric deformation of a liquid–liquid interface. Eur. J. Mech. B/Fluids 27 (4), 419432.CrossRefGoogle Scholar
7. Chraibi, H., Lasseux, D., Arquis, E., Wunenburger, R. & Delville, J.-P. 2008b Stretching and squeezing of sessile dielectric drops by the optical radiation pressure. Phys. Rev. E 77, 066706.CrossRefGoogle ScholarPubMed
8. Chraibi, H., Lasseux, D., Wunenburger, R., Arquis, E. & Delville, J.-P. 2010 Optohydrodynamics of soft fluid interfaces: optical and viscous nonlinear effects. Eur. Phys. J. E 32, 4352.CrossRefGoogle ScholarPubMed
9. Davis, P. J. & Rabinowitz, P. 1984 Methods of Numerical Integration. Academic.Google Scholar
10. Delville, J.-P., RobertDeSaintVincent, M., Schroll, R. D., Chraibi, H., Issenmann, B., Wunenburger, R., Lasseux, D., Zhang, W. W. & Brasselet, E. 2009 Laser microfluidics: fluid actuation by light. J. Opt. A: Pure Appl. Opt. 11, 034015.CrossRefGoogle Scholar
11. Graziani, G. 1989 A boundary integral function method for axisymmetric viscous flows. Intl Engng Sci. 27–7, 855864.CrossRefGoogle Scholar
12. Hamilton, M. F. & Blackstock, D. T. 1998 Nonlinear Acoustics. Academic.Google Scholar
13. Issenmann, B., Wunenburger, R., Chraibi, H., Gandil, M. & Delville, J.-P. 2011 Unsteady deformations of a free liquid surface caused by radiation pressure. J. Fluid Mech. 682, 460490.CrossRefGoogle Scholar
14. Kellay, H., Binks, B., Hendrikx, Y., Lee, L. & Meunier, J. 1994 Properties of surfactant monolayers in relation to microemulsion phase behaviour. Adv. Colloid Interface Sci. 49, 85112.CrossRefGoogle Scholar
15. Koch, D. M. & Koch, D. L. 1994 Numerical and theoretical solutions for a drop spreading below a free fluid surface. J. Fluid Mech. 287, 251278.CrossRefGoogle Scholar
16. Lee, S. H. & Leal, L. G. 1982 The motion of a sphere in the presence of a deformable interface. J. Fluid Mech. 87, 81106.Google Scholar
17. Lee, Y.-K., Deval, J., Tabeling, P. & Ho, C.-M. 2001 Chaotic mixing in electrokinetically and pressure driven micro flows. Proc. IEEE Micro Electro Mechanical Systems (MEMS) 483486.Google Scholar
18. Manga, M. & Stone, H. A. 1994 Low Reynolds number motion of bubbles, drops and rigid spheres through fluid–fluid interfaces. J. Fluid Mech. 287, 279298.CrossRefGoogle Scholar
19. Nguyen, N.-T. & Wu, Z. 2005 Micromixersa review. J. Micromech. Microengng 15, 116.CrossRefGoogle Scholar
20. Nyborg, W. L. 1958 Acoustic streaming near a boundary. J. Acoust. Soc. Am. 30, 329339.CrossRefGoogle Scholar
21. Occhialini, J. M., Muldowney, G. P. & Higdon, J. J. L. 1992 Boundary intergral/spectral element approaches to the Navier–Stokes equations. Intl J. Numer. Meth. Fluids 15, 13611381.CrossRefGoogle Scholar
22. Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.CrossRefGoogle Scholar
23. Savchenko, A. Y., Tabiryan, N. V. & Zeldovich, B. Y. 1997 Transfer of momentum and torque from a light beam to a liquid. Phys. Rev. E 56, 47734779.CrossRefGoogle Scholar
24. Schroll, R., Wunenburger, R., Casner, A., Zhang, W. & Delville, J.-P. 2007 Liquid transport due to light scattering. Phys. Rev. Lett. 98, 133601.CrossRefGoogle ScholarPubMed
25. Sherwood, J. D. 1987 Breakup of fluid droplets in electric and magnetic fields. J. Fluid Mech. 188, 133146.CrossRefGoogle Scholar
26. Wunenburger, R., Issenmann, B., Brasselet, E., Loussert, C., Hourtane, V. & Delville, J.-P. 2010 Fluid flows driven by light scattering. J. Fluid Mech. 666, 273307.CrossRefGoogle Scholar