Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-22T14:16:32.248Z Has data issue: false hasContentIssue false

Dynamics of drop coalescence at fluid interfaces

Published online by Cambridge University Press:  10 February 2009

FRANÇOIS BLANCHETTE*
Affiliation:
School of Natural Sciences, University of California Merced, 5200 N. Lake Road, Merced, CA 95343, USA
TERRY P. BIGIONI
Affiliation:
Department of Chemistry, University of Toledo, 2801 W. Bancroft Street, Toledo, OH 13606, USA
*
Email address for correspondence: [email protected]

Abstract

Drop coalescence was studied using numerical simulations. Liquid drops were made to coalesce with a body of the same liquid, either a reservoir or a drop of different size, each with negligible impact velocity. We considered either gas or liquid as a surrounding fluid, and experimental results are discussed for the gas–liquid set-up. Under certain conditions, a drop will not fully coalesce with the liquid reservoir, leaving behind a daughter drop. Partial coalescence is observed for systems of low viscosity, characterized by a small Ohnesorge number, where capillary waves remain sufficiently vigourous to distort the drop significantly. For drops coalescing with a flat interface, we determine the critical Ohnesorge number as a function of Bond number, as well as density and viscosity ratios of the fluids. Studying the coalescence of two drops of different sizes reveals that partial coalescence may occur in low-viscosity systems provided the size ratio of the drops exceeds a certain threshold. We also determine the extent to which the process of partial coalescence is self-similar and find that the viscosity of the drop has a large effect on the droplet's vertical velocity after pinch off. Finally, we report on the formation of satellite droplets generated after a first pinch off and on the ejection of a jet of tiny droplets during coalescence of a parent drop significantly deformed by gravity.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anilkumar, A. V., Lee, C. P. & Wang, T. G. 1991 Surface-tension-induced mixing following coalescence of initially stationary drops. Phys. Fluids A 3, 25872591.Google Scholar
Aryafar, H. & Kavehpour, H. P. 2006 Drop coalescence through planar surfaces. Phys. Fluids 18 (7), 072105.CrossRefGoogle Scholar
Bach, G. A., Koch, D. L. & Gonipath, A. 2004 Coalescence and bouncing of small aerosol droplets. J. Fluid Mech. 518, 157185.CrossRefGoogle Scholar
Berry, E. X. & Reinhardt, R. L. 1974 Analysis of cloud drop growth by collection. 3. Accretion and self-collection. J. Atmos. Sci. 31, 21182126.2.0.CO;2>CrossRefGoogle Scholar
Bhakta, A. & Ruckenstein, E. 1997 Decay of standing foams: drainage, coalescence and collapse. Adv. Colloid Interface Sci. 70, 1124.CrossRefGoogle Scholar
Blanchard, D. C. 1989 The size and height to which drops are ejected from bursting bubbles in sea-water. J. Geophys. Res. 94, 10 99911 002.CrossRefGoogle Scholar
Blanchette, F. & Bigioni, T. P. 2006 Partial coalescence of drops at liquid interfaces. Nat. Phys. 2 (4), 254257.Google Scholar
Briggs, W. L. 1987 A Multigrid Tutorial. SIAM.Google Scholar
Brown, D. L., Cortez, R. & Minion, M. L. 2001 Accurate projection methods for the incompressible Navier–Stokes equations. J. Comp. Phys. 168, 464499.CrossRefGoogle Scholar
Burrill, K. A. & Woods, D. R. 1973 Film shapes for deformable drops at liquid–liquid interfaces. 3. Drop rest-times. J. Colloid Interface Sci. 42, 3551.CrossRefGoogle Scholar
Cai, Y. K. 1989 Phenomena of a liquid drop falling to a liquid surface. Exp. Fluids 7, 388394.CrossRefGoogle Scholar
Charles, G. E. & Mason, S. G. 1960 a The mechanism of partial coalescence of liquid drops at liquid/liquid interfaces. J. Colloid Sci. 15, 105122.CrossRefGoogle Scholar
Charles, G. E. & Mason, S. G. 1960 b The coalescence of liquid drops with flat liquid/liquid interfaces. J. Colloid Sci. 15, 236267.CrossRefGoogle Scholar
Chen, X., Mandre, S. & Feng, J. J. 2006 Partial coalescence between a drop and a liquid–liquid interface. Phys. Fluids 18, 051705.CrossRefGoogle Scholar
Cockbain, E. G. & McRoberts, T. S. 1953 The stability of elementary emulsion drops and emulsions. J. Colloid Sci. 8, 440451.CrossRefGoogle Scholar
Dooley, B. S., Warncke, A. E., Gharib, M. & Tryggvason, G. 1997 Vortex ring generation due to the coalescence of a water drop at a free surface. Exp. Fluids 22 (5), 369374.CrossRefGoogle Scholar
Friedlander, S. 2000 Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics. Oxford University Press.Google Scholar
Gilet, T., Mulleners, K., Lecomte, J. P., Vandewalle, N. & Dorbolo, S. 2007 Critical parameters for the partial coalescence of a droplet. Phys. Rev. E 75, 036303.CrossRefGoogle ScholarPubMed
Gonipath, A. & Koch, D. L. 2001 Dynamics of droplet rebound from a weakly deformable gas–liquid interface. Phys. Fluids 13, 35263532.Google Scholar
Gonipath, A. & Koch, D. L. 2002 Collision and rebound of small droplets in an incompressible continuum gas. J. Fluid Mech. 454, 145201.Google Scholar
Hahn, C. P., Chen, J. D. & Slattery, J. C. 1985 Effects of London-van der Waals forces on the thinning and rupture of a dimpled liquid film as a small drop or bubble approaches a fluid–fluid interface. AIChE J. 31, 20262038.CrossRefGoogle Scholar
Honey, E. M. & Kavehpour, H. P. 2006 Astonishing life of a coalescing drop on a free surface. Phys. Rev. E 73 (2), 027301.Google ScholarPubMed
Jayaratne, O. W. & Mason, B. J. 1964 The coalescence and bouncing of water drops at an air/interface. Proc. R. Soc. A 280, 545565.Google Scholar
Lafaurie, B., Nardone, C., Scardovelli, R., Zaleski, S. & Zanetti, G. 1994 Modelling merging and fragmentation in multiphase flows with SURFER. J. Comp. Phys. 113, 134147.CrossRefGoogle Scholar
Lide, D. R. (Ed.) 2002 Handbook of Chemistry and Physics (83rd ed.). CRC Press.Google Scholar
Linton, M. & Sutherland, K. L. 1956 The coalescence of liquid drops. J. Colloid Sci. 11, 391397.CrossRefGoogle Scholar
Longuet-Higgins, M. S. & Cokelet, E. D. 1976 The deformation of steep surface waves on water. I. A numerical method of computation. Proc. R. Soc. Lond. A 350, 126.Google Scholar
Mohamed-Kassim, Z. & Longmire, E. K. 2004 Drop coalescence through a liquid/liquid interface. Phys. Fluids 16, 21702181.CrossRefGoogle Scholar
Neitzel, G. P. & Dell'aversana, P. 2002 Noncoalescence and nonwetting behavior of liquids. Ann. Rev. Fluid Mech. 34, 267289.CrossRefGoogle Scholar
Notz, P. K. & Basaran, O. A. 1999 Dynamics of drop formation in an electric field. J. Colloid Interface Sci. 213, 218237.CrossRefGoogle ScholarPubMed
Oliviera, R. C. G., Gonzalez, G. & Oliviera, J. F. 1999 Interfacial studies on dissolved gas flotation of oil droplets for water purification. Colloid Surf. A 154, 127135.CrossRefGoogle Scholar
Orme, M. 1998 Experiments on droplet collisions, bounce, coalescence and disruption. Prog. Ener. Combust. Sci. 23, 6579.CrossRefGoogle Scholar
Osher, S. & Fedkiw, R. P. 2001 Level set methods: an overview and some recent results. J. Comp. Phys. 169, 463502.CrossRefGoogle Scholar
Peyret, R. & Taylor, P. D. 1983 Computational Methods for Fluid Flow. Springer-Verlag.CrossRefGoogle Scholar
Pikhitsa, P. & Tsargorodskaya, A. 2000 Possible mechanism for multistage coalescence of a floating droplet on the air/liquid interface. Colloids Surf. A: Physiochem. Engng Aspects 167, 287291.CrossRefGoogle Scholar
Plateau, J. A. F. 1873 Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires, Gauthier-Villars.Google Scholar
Popinet, S. & Zaleski, S. 1999 A front tracking algorithm for the accurate representation of surface tension. Int. J. Numer. Meth. Fluids 30, 775793.3.0.CO;2-#>CrossRefGoogle Scholar
Popinet, S. & Zaleski, S. 2002 Bubble collapse near a solid boundary: a numerical study of the influence of viscosity. J. Fluid Mech. 464, 137163.CrossRefGoogle Scholar
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.CrossRefGoogle Scholar
Raes, F., van Dingenen, R., Vignati, E., Wilson, J., Putaud, J.-P., Seinfeld, J. H. & Adams, P. 2000 Formation and cycling of aerosols in the global troposphere. Atmos. Env. 34, 42154240.CrossRefGoogle Scholar
Rein, M. 1996 The transitional regime between coalescing and splashing drops. J. Fluid Mech. 306, 145165.CrossRefGoogle Scholar
Reynolds, O. 1875 On the action of rain to calm the sea. Proc. Lit. Phil. Soc. Manchester 14, 7274.Google Scholar
Reynolds, O. 1881 On the floating of drops on the surface of water depending only on the purity of the surface. Proc. Lit. Phil. Soc. Manchester 21, 12.Google Scholar
Richard, D. & Quere, D. 2000 Bouncing water drops. Europhys. Lett. 50, 769775.CrossRefGoogle Scholar
Sarpaya, T. 1996 Vorticity, free surface and surfactants. Ann. Rev. Fluid Mech. 28, 83128.CrossRefGoogle Scholar
Scardovelli, R. & Zaleski, S. 1999 Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech. 31, 567603.CrossRefGoogle Scholar
Sethian, J. A. 1999 Fast marching methods and level sets methods for propagating interfaces. Cambridge University Press.CrossRefGoogle Scholar
Sussman, M., Almgren, A. S., Bell, J. B., Colella, P., Howell, L. H. & Welcome, M. L. 1999 An adaptive level set approach for incompressible two-phase flows. J. Comp. Phys. 148, 81124.CrossRefGoogle Scholar
Sussman, M., Smereka, P. & Osher, S. 1994 A level set approach for computing solutions to incompressible 2-phase flow. J. Comp. Phys. 114, 146159.CrossRefGoogle Scholar
Thompson, J. J. & Newall, H. F. 1885 On the formation of vortex rings by drops falling into liquids and some allied phenomena. Proc. R. Soc. Lond. 39, 417436.Google Scholar
Thoroddsen, S. T. & Takehara, K. 2000 The coalescence cascade of a drop. Phys. Fluids 12, 12651267.CrossRefGoogle Scholar
Tian, Q. & Huizhou, L. 2007 Densities and viscosities of binary mixtures of tributyl phosphate with hexane and dodecane from (298.15 to 328.15) K. J. Chem. Engng Data 52, 892897.CrossRefGoogle Scholar