Published online by Cambridge University Press: 22 June 2001
Bifurcation analysis, linear stability study, and direct numerical simulations of the dynamics of a two-dimensional, incompressible, and laminar flow in a symmetric long channel with a sudden expansion with right angles and with an expansion ratio D/d (d is the width of the channel inlet section and D is the width of the outlet section) are presented. The bifurcation analysis of the steady flow equations concentrates on the flow states around a critical Reynolds number Rec(D/d) where asymmetric states appear in addition to the basic symmetric states when Re [ges ] Rec(D/d). The bifurcation of asymmetric states at Rec has a pitchfork nature and the asymmetric perturbation grows like √Re − Rec(D/d). The stability analysis is based on the linearized equations of motion for the evolution of infinitesimal two-dimensional disturbances imposed on the steady symmetric as well as asymmetric states. A neutrally stable asymmetric mode of disturbance exists at Rec(D/d) for both the symmetric and the asymmetric equilibrium states. Using asymptotic methods, it is demonstrated that when Re < Rec(D/d) the symmetric states have an asymptotically stable mode of disturbance. However, when Re > Rec(D/d), the symmetric states are unstable to this mode of asymmetric disturbance. It is also shown that when Re > Rec(D/d) the asymmetric states have an asymptotically stable mode of disturbance. The direct numerical simulations are guided by the theoretical approach. In order to improve the numerical simulations, a matching with the asymptotic solution of Moffatt (1964) in the regions around the expansion corners is also included. The dynamics of both small- and large-amplitude disturbances in the flow is described and the transition from symmetric to asymmetric states is demonstrated. The simulations clarify the relationship between the linear stability results and the time-asymptotic behaviour of the flow. The current analyses provide a theoretical foundation for previous experimental and numerical results and shed more light on the transition from symmetric to asymmetric states of a viscous flow in an expanding channel. It is an evolution from a symmetric state, which loses its stability when the Reynolds number of the incoming flow is above Rec(D/d), to a stable asymmetric equilibrium state. The loss of stability is a result of the interaction between the effects of viscous dissipation, the downstream convection of perturbations by the base symmetric flow, and the upstream convection induced by two-dimensional asymmetric disturbances.