Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T17:11:10.877Z Has data issue: false hasContentIssue false

Dynamics of a bubble bouncing at a liquid/liquid/gas interface

Published online by Cambridge University Press:  19 October 2016

Jie Feng
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
Metin Muradoglu
Affiliation:
Department of Mechanical Engineering, Koc University, Istanbul 34450, Turkey
Hyoungsoo Kim
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
Jesse T. Ault
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
Howard A. Stone*
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
*
Email address for correspondence: [email protected]

Abstract

We study the dynamics of an air bubble bouncing at a liquid/liquid/gas interface, which we refer to as a compound interface. When a bubble interacts with a thin layer of oil on top of bulk water, the oil layer modifies the interfacial properties and thus the entire process of bouncing and bubble bursting. The influence on the bubble motion is experimentally and numerically investigated. Based on the coefficient of restitution and the damping rate of the bubble velocity profile, the damping increases with the oil layer thickness and viscosity. In addition, the effect of the oil layer thickness is more prominent for high-viscosity oil. Furthermore, a reduced-order mass–spring–damper model is proposed to describe the bubble bouncing at the compound interface, which predicts the time of the first contact of the bubble with the interface and agrees well with the experimental results. Such a model also captures the general experimental trends of the coefficient of restitution for the multiphase system. Our work contributes to a further understanding of the collision and coalescence of bubbles with a compound interface.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blanchette, F. & Bigioni, T. P. 2006 Partial coalescence of drops at liquid interfaces. Nat. Phys. 2 (4), 254257.CrossRefGoogle Scholar
Clanet, C., Béguin, C., Richard, D. & Quéré, D. 2004 Maximal deformation of an impacting drop. J. Fluid Mech. 517, 199208.CrossRefGoogle Scholar
Cunliffe, M., Engel, A., Frka, S., Gašparović, B., Guitart, C., Murrell, J. C., Salter, M., Stolle, C., Upstill-Goddard, R. & Wurl, O. 2013 Sea surface microlayers: a unified physicochemical and biological perspective of the air–ocean interface. Prog. Oceanogr. 109, 104116.CrossRefGoogle Scholar
Duineveld, P. C. 1994 Bouncing and coalescence phenomena of two bubbles in water. In Bubble Dynamics and Interface Phenomena, pp. 447456. Springer.CrossRefGoogle Scholar
Feng, J., Nunes, J. K., Shin, S., Yan, J., Kong, Y. L., Prud’homme, R. K., Arnaudov, L. N., Stoyanov, S. D. & Stone, H. A. 2016 A scalable platform for functional nanomaterials via bubble-bursting. Adv. Mater. 28 (21), 40474052.CrossRefGoogle ScholarPubMed
Feng, J., Roché, M., Vigolo, D., Arnaudov, L. N., Stoyanov, S. D., Gurkov, T. D., Tsutsumanova, G. G. & Stone, H. A. 2014 Nanoemulsions obtained via bubble bursting at a compound interface. Nat. Phys. 10, 606612.CrossRefGoogle Scholar
Gilet, T. & Bush, J. W. M. 2009 The fluid trampoline: droplets bouncing on a soap film. J. Fluid Mech. 625, 167203.CrossRefGoogle Scholar
Glazman, R. E. 1983 Effects of adsorbed films on gas bubble radial oscillations. J. Acoust. Soc. Am. 74 (3), 980986.CrossRefGoogle Scholar
Gondret, P., Lance, M. & Petit, L. 2002 Bouncing motion of spherical particles in fluids. Phys. Fluids 14 (2), 643652.CrossRefGoogle Scholar
Harlow, F. H. & Welch, J. E. 1965 Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8 (12), 2182.CrossRefGoogle Scholar
Johnson, B. D. & Cooke, R. C. 1979 Bubble populations and spectra in coastal waters: a photographic approach. J. Geophys. Res. 84 (C7), 37613766.CrossRefGoogle Scholar
Joseph, G. G., Zenit, R., Hunt, M. L. & Rosenwinkel, A. M. 2001 Particle–wall collisions in a viscous fluid. J. Fluid Mech. 433, 329346.CrossRefGoogle Scholar
Klaseboer, E., Manica, R., Hendrix, M. H. W., Ohl, C. D. & Chan, D. Y. C. 2014 A force balance model for the motion, impact, and bounce of bubbles. Phys. Fluids 26 (9), 092101.CrossRefGoogle Scholar
Kosior, D., Zawala, J., Todorov, R., Exerowa, D. & Malysa, K. 2014 Bubble bouncing and stability of liquid films formed under dynamic and static conditions from n-octanol solutions. Colloids Surf. A 460, 391400.CrossRefGoogle Scholar
Krzan, M., Lunkenheimer, K. & Malysa, K. 2003 Pulsation and bouncing of a bubble prior to rupture and/or foam film formation. Langmuir 19 (17), 65866589.CrossRefGoogle Scholar
Krzan, M. & Malysa, K. 2002 Profiles of local velocities of bubbles in n-butanol, n-hexanol and n-nonanol solutions. Colloids Surf. A 207 (1), 279291.CrossRefGoogle Scholar
Lamb, H. 1945 Hydrodynamics. Cambridge University Press.Google Scholar
Legendre, D., Daniel, C. & Guiraud, P. 2005 Experimental study of a drop bouncing on a wall in a liquid. Phys. Fluids 17 (9), 097105.CrossRefGoogle Scholar
Legendre, D., Zenit, R. & Velez-Cordero, J. R. 2012 On the deformation of gas bubbles in liquids. Phys. Fluids 24 (4), 043303.CrossRefGoogle Scholar
Li, E. Q., Al-Otaibi, S. A., Vakarelski, I. U. & Thoroddsen, S. T. 2014 Satellite formation during bubble transition through an interface between immiscible liquids. J. Fluid Mech. 744, R1.CrossRefGoogle Scholar
Okumura, K., Chevy, F., Richard, D., Quéré, D. & Clanet, C. 2003 Water spring: a model for bouncing drops. Eur. Phys. Lett. 62 (2), 237243.CrossRefGoogle Scholar
Peskin, C. S. 1977 Numerical analysis of blood flow in the heart. J. Comput. Phys. 25 (3), 220252.CrossRefGoogle Scholar
Ribeiro, C. P. Jr & Mewes, D. 2007 The influence of electrolytes on gas hold-up and regime transition in bubble columns. Chem. Engng Sci. 62 (17), 45014509.CrossRefGoogle Scholar
Richard, D. & Quéré, D. 2000 Bouncing water drops. Eur. Phys. Lett. 50 (6), 769775.CrossRefGoogle Scholar
Sanada, T., Watanabe, M. & Fukano, T. 2005 Effects of viscosity on coalescence of a bubble upon impact with a free surface. Chem. Engng Sci. 60 (19), 53725384.CrossRefGoogle Scholar
Sato, A., Shirota, M., Sanada, T. & Watanabe, M. 2011 Modeling of bouncing of a single clean bubble on a free surface. Phys. Fluids 23 (1), 013307.CrossRefGoogle Scholar
Suñol, F. & González-Cinca, R. 2010 Rise, bouncing and coalescence of bubbles impacting at a free surface. Colloids Surf. A 365 (1), 3642.CrossRefGoogle Scholar
Tryggvason, G., Bunner, B., Esmaeelic, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S. & Jan, Y. J. 2001 A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169 (2), 708759.CrossRefGoogle Scholar
Tsao, H. & Koch, D. L. 1997 Observations of high Reynolds number bubbles interacting with a rigid wall. Colloids Surf. A 9 (1), 4456.Google Scholar
Uemura, T., Ueda, Y. & Iguchi, M. 2010 Ripples on a rising bubble through an immiscible two-liquid interface generate numerous micro droplets. Eur. Phys. Lett. 92 (3), 34004.CrossRefGoogle Scholar
Unverdi, S. O. & Tryggvason, G. 1992 A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 100 (1), 2537.CrossRefGoogle Scholar
Zawala, J. & Dabros, T. 2013 Analysis of energy balance during collision of an air bubble with a solid wall. Phys. Fluids 25 (12), 123101.CrossRefGoogle Scholar
Zawala, J., Dorbolo, S., Vandewalle, N. & Malysa, K. 2013 Bubble bouncing at a clean water surface. Phys. Chem. Chem. Phys. 15 (40), 1732417332.CrossRefGoogle Scholar
Zawala, J., Krasowska, M., Dabros, T. & Malysa, K. 2007 Influence of bubble kinetic energy on its bouncing during collisions with various interfaces. Can. J. Chem. Engng 85 (5), 669678.CrossRefGoogle Scholar
Zawala, J. & Malysa, K. 2011 Influence of the impact velocity and size of the film formed on bubble coalescence time at water surface. Langmuir 27 (6), 22502257.CrossRefGoogle ScholarPubMed
Zenit, R. & Legendre, D. 2009 The coefficient of restitution for air bubbles colliding against solid walls in viscous liquids. Phys. Fluids 21 (8), 083306.CrossRefGoogle Scholar

Feng et al. supplementary movie

Collisions of a bubble with an air/water interface. Here 𝑢0=31.6 cm/s, 𝑑𝑒𝑞=1.30 mm, ℎi=14.4 mm, 𝑅𝑒 =4.6×102, 𝑊𝑒 =1.9.

Download Feng et al. supplementary movie(Video)
Video 1.6 MB
Supplementary material: PDF

Feng et al. supplementary material

Supplementary data

Download Feng et al. supplementary material(PDF)
PDF 7.4 MB

Feng et al. supplementary movie

Collisions of a bubble with an air/oil/water interface. Here 𝑢0=31.6 cm/s, 𝑑𝑒𝑞=1.30 mm, 𝜈0=20 mm2/s, ℎ=1.50 mm, ℎi=14.4 mm, 𝑅𝑒 =4.6×102, 𝑊𝑒 =1.9.

Download Feng et al. supplementary movie(Video)
Video 1.6 MB