Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-08T04:48:29.579Z Has data issue: false hasContentIssue false

Dynamics in closed and open capillaries

Published online by Cambridge University Press:  07 June 2019

T. S. Ramakrishnan*
Affiliation:
Schlumberger-Doll Research, 1 Hampshire St., Cambridge, MA 02139, USA
P. Wu
Affiliation:
Schlumberger-Doll Research, 1 Hampshire St., Cambridge, MA 02139, USA Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
H. Zhang
Affiliation:
Schlumberger-Doll Research, 1 Hampshire St., Cambridge, MA 02139, USA
D. T. Wasan
Affiliation:
Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
*
Email address for correspondence: [email protected]

Abstract

Capillary rise of a liquid displacing gas is analysed for both open and closed capillaries. We include menisci mass and hysteresis, and show that oscillations due to inertia are muted by friction at the advancing meniscus. From single-phase numerical computations in a no-slip/slip capillary, we quantify losses due to entry, flow development, meniscus slip, exit and acceleration of fluid within the reservoir. For closed capillaries, determining viscous drag due to gas requires inclusion of compressibility, and solving a moving boundary problem. This solution is derived through perturbation expansion with respect to two different small parameters for obtaining pressure above the liquid meniscus. Our rise predictions spanning a large range of experimental conditions and fluids for both open and closed capillaries match the data. The experimental data confirm the adequacy of the theoretically constructed dimensionless groups for predicting oscillatory behaviour.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bird, R. B., Stewart, W. E. & Lightfoot, E. N. 2002 Transport Phenomena, 2nd edn. John Wiley & Sons.Google Scholar
Blake, T. D. 2006 The physics of moving wetting lines. J. Colloid. Interface Sci. 299 (1), 113.Google Scholar
Blake, T. D. & Haynes, J. M. 1969 Kinetics of liquid/liquid displacement. J. Colloid Interface Sci. 30 (3), 421423.Google Scholar
Bosanquet, C. H. 1923 On the flow of liquids into capillary tubes. Lond. Edin. Dublin Phil. Mag. J. Sci. 45 (267), 525531.Google Scholar
Brochard-Wyart, F. & De Gennes, P. G. 1992 Dynamics of partial wetting. Adv. Colloid. Interface Sci. 39, 111.Google Scholar
Cox, R. G. 1986 The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 168, 169194.Google Scholar
Das, S. & Mitra, S. K. 2013 Different regimes in vertical capillary filling. Phys. Rev. E 87 (6), 063005.Google Scholar
Dorsey, N. E. 1926 Measurement of surface tension. NBS Sci. Papers 21, 563595.Google Scholar
Duvivier, D., Blake, T. D. & De Coninck, J. 2013 Toward a predictive theory of wetting dynamics. Langmuir 29 (32), 1013210140.Google Scholar
Fries, N. & Dreyer, M. 2008 The transition from inertial to viscous flow in capillary rise. J. Colloid. Interface Sci. 327, 125128.Google Scholar
Hamraoui, A. & Nylander, T. 2002 Analytical approach for the Lucas–Washburn equation. J. Colloid. Interface Sci. 250 (2), 415421.Google Scholar
Hartland, S. & Hartley, R. W. 1976 Axisymmetric Fluid–liquid Interfaces: Tables Giving the Shape of Sessile and Pendant Drops and External Menisci, with Examples of Their Use. Elsevier Science Ltd.Google Scholar
Heshmati, M. & Piri, M. 2014 Experimental investigation of dynamic contact angle and capillary rise in tubes with circular and noncircular cross sections. Langmuir 30 (47), 1415114162.Google Scholar
Hoffman, R. L. 1975 A study of the advancing interface. I. Interface shape in liquid–gas systems. J. Colloid. Interface Sci. 50 (2), 228241.Google Scholar
Hultmark, M., Aristoff, J. M. & Stone, H. A. 2011 The influence of the gas phase on liquid imbibition in capillary tubes. J. Fluid Mech. 678, 600606.Google Scholar
Jurin, J. 1717 An account of some experiments shown before the royal society; with an enquiry into the cause of the ascent and suspension of water in capillary tubes. Phil. Trans. 30, 739747.Google Scholar
Katoh, K., Wakimoto, T., Yamamoto, Y. & Ito, T. 2015 Dynamic wetting behavior of a triple-phase contact line in several experimental systems. Exp. Therm. Fluid Sci. 60, 354360.Google Scholar
Kornev, K. G. & Neimark, A. V. 2001 Spontaneous penetration of liquids into capillaries and porous membranes revisited. J. Colloid. Interface Sci. 235 (1), 101113.Google Scholar
Lim, H., Tripathi, A. & Lee, J. 2014 Dynamics of a capillary invasion in a closed-end capillary. Langmuir 30 (31), 93909396.Google Scholar
Liu, S., Li, S. & Liu, J. 2018 Jurin’s law revisited: exact meniscus shape and column height. Eur. Phys. J. E 41 (3), 46.Google Scholar
Lucas, R. 1918 Rate of capillary ascension of liquids. Kolloid Z 23 (15), 1522.Google Scholar
Maggi, F. & Alonso-Marroquin, F. 2012 Multiphase capillary flows. Intl J. Multiphase Flow 42, 6273.Google Scholar
Masoodi, R., Languri, E. & Ostadhossein, A. 2013 Dynamics of liquid rise in a vertical capillary tube. J. Colloid Interface Sci. 389 (1), 268272.Google Scholar
Popescu, M. N., Ralston, J. & Sedev, R. 2008 Capillary rise with velocity-dependent dynamic contact angle. Langmuir 24 (21), 1271012716.Google Scholar
Quéré, D 1997 Inertial capillarity. Europhys. Lett. 39 (5), 533.Google Scholar
Quéré, D., Raphaël, É. & Ollitrault, J.-Y. 1999 Rebounds in a capillary tube. Langmuir 15 (10), 36793682.Google Scholar
Radiom, M., Chan, W. K. & Yang, C. 2010 Capillary filling with the effect of pneumatic pressure of trapped air. Microfluid Nanofluid 9 (1), 6575.Google Scholar
Szekely, J., Neumann, A. W. & Chuang, Y. K. 1971 The rate of capillary penetration and the applicability of the washburn equation. J. Colloid Interface Sci. 35 (2), 273278.Google Scholar
Verschaffelt, J. 1919 Applications of small drops and bubbles. K. Akad Amsterdam 21, 366374.Google Scholar
Voinov, O. V. 1976 Hydrodynamics of wetting. Fluid Dyn. 11 (5), 714721.Google Scholar
Walls, P. L. L., Dequidt, G. & Bird, J. C. 2016 Capillary displacement of viscous liquids. Langmuir 32 (13), 31863190.Google Scholar
Washburn, E. W. 1921 The dynamics of capillary flow. Phys. Rev. 17 (3), 273.Google Scholar
Wu, P., Nikolov, A. D. & Wasan, D. T. 2017 Capillary rise: validity of the dynamic contact angle models. Langmuir 33 (32), 78627872.Google Scholar
Xiao, Y., Yang, F. & Pitchumani, R. 2006 A generalized analysis of capillary flows in channels. J. Colloid. Interface Sci. 298 (2), 880888.Google Scholar
Zhmud, B. V., Tiberg, F. & Hallstensson, K. 2000 Dynamics of capillary rise. J. Colloid Interface Sci. 228 (2), 263269.Google Scholar