Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T14:33:21.107Z Has data issue: false hasContentIssue false

Dynamic interactions of multiple wall-mounted flexible flaps

Published online by Cambridge University Press:  08 May 2019

Joseph O’Connor*
Affiliation:
School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, UK
Alistair Revell
Affiliation:
School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, UK
*
Email address for correspondence: [email protected]

Abstract

Coherent waving interactions between vegetation and fluid flows are known to emerge under conditions associated with the mixing layer instability. A similar waving motion has also been observed in flow control applications, where passive slender structures are used to augment bluff body wakes. While their existence is well reported, the mechanisms which govern this behaviour, and their dependence on structural properties, are not yet fully understood. This work investigates the coupled interactions of a large array of slender structures in an open-channel flow, via numerical simulation. A direct modelling approach, whereby the individual structures are fully resolved, is realised via a lattice Boltzmann-immersed boundary-finite element model. For steady flow conditions at low–moderate Reynolds number, the response of the array is measured over a range of mass ratio and bending rigidity, spanning two orders of magnitude, and the ensuing response is characterised. The results show a range of behaviours which are classified into distinct states: static, regular waving, irregular waving and flapping. The regular waving regime is found to occur when the natural frequency of the array approaches the estimated frequency of the mixing layer instability. Furthermore, after normalising with respect to the natural frequency of the array, the frequency response across the examined parameter space collapses onto a single curve. These findings indicate that the coherent waving mode is in fact a coupled instability, as opposed to a purely fluid-driven response, and that this specific regime is triggered by a lock-in between the fluid and structural natural frequencies.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aidun, C. K. & Clausen, R. C. 2010 Lattice–Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42, 439472.Google Scholar
Bathe, K. J. 2014 Finite Element Procedures, 2nd edn. Prentice Hall.Google Scholar
de Borst, R., Crisfield, M. A., Remmers, J. J. C. & Verhoosel, C. V. 2012 Non-Linear Finite Element Analysis of Solids and Structures, 2nd edn. Wiley.Google Scholar
van Brummelen, E. H. 2009 Added mass effects of compressible and incompressible flows in fluid-structure interaction. Trans ASME J. Appl. Mech. 76 (2), 021206.Google Scholar
Chen, S. & Doolen, G. D. 1998 Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329364.Google Scholar
Connell, B. S. H. & Yue, D. K. P. 2007 Flapping dynamics of a flag in a uniform stream. J. Fluid Mech. 581, 3367.Google Scholar
De Rosis, A., Falcucci, G., Ubertini, S. & Ubertini, F. 2013 A coupled lattice Boltzmann-finite element approach for two-dimensional fluid-structure interaction. Comput. Fluids 86, 558568.Google Scholar
Degroote, J. 2013 Partitioned simulation of fluid-structure interaction. Arch. Comput. Meth. Engng 20 (3), 185238.Google Scholar
Dupont, S., Gosselin, F., Py, C., de Langre, E., Hemon, P. & Brunet, Y. 2010 Modelling waving crops using large-eddy simulation: comparison with experiments and a linear stability analysis. J. Fluid Mech. 652, 544.Google Scholar
Favier, J., Dauptain, A., Basso, D. & Bottaro, A. 2009 Passive separation control using a self-adaptive hairy coating. J. Fluid Mech. 627, 451483.Google Scholar
Favier, J., Li, C., Kamps, L., Revell, A., O’Connor, J. & Brücker, C. 2017 The PELskin project – part I: fluid-structure interaction for a row of flexible flaps: a reference study in oscillating channel flow. Meccanica 52 (8), 17671780.Google Scholar
Förster, C., Wall, W. A. & Ramm, E. 2007 Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput. Meth. Appl. Mech. Engng 196 (7), 12781293.Google Scholar
Gedan, K. B., Kirwan, M. L., Wolanski, E., Barbier, E. B. & Silliman, B. R. 2011 The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Clim. Change 106 (1), 729.Google Scholar
Ghisalberti, M. 2002 Mixing layers and coherent structures in vegetated aquatic flows. J. Geophys. Res. 107 (C2), 3011.Google Scholar
Ghisalberti, M. & Nepf, H. M. 2006 The structure of the shear layer in flows over rigid and flexible canopies. Environ. Fluid Mech. 6 (3), 277301.Google Scholar
Gosselin, F. & de Langre, E. 2009 Destabilising effects of plant flexibility in air and aquatic vegetation canopy flows. Eur. J. Mech. (B/Fluids) 28 (2), 271282.Google Scholar
Goza, A. & Colonius, T. 2017 A strongly-coupled immersed-boundary formulation for thin elastic structures. J. Comput. Phys. 336, 401411.Google Scholar
Guo, Z., Zheng, C. & Shi, B. 2002 Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65 (4), 046308.Google Scholar
Harwood, A. R. G., O’Connor, J., Muñoz, J. S., Santasmasas, M. C. & Revell, A. J. 2018 LUMA: A many-core, fluid-structure interaction solver based on the Lattice–Boltzmann method. SoftwareX 7, 8894.Google Scholar
He, X. & Luo, L. 1997a A priori derivation of the lattice Boltzmann equation. Phys. Rev. E 55 (6), R6333.Google Scholar
He, X. & Luo, L. 1997b Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56 (6), 68116817.Google Scholar
Ho, C. M. & Huerre, P. 1984 Perturbed free shear layers. Annu. Rev. Fluid Mech. 16, 365422.Google Scholar
Hou, G., Wang, J. & Layton, A. 2012 Numerical methods for fluid-structure interaction – a review. Commun. Comput. Phys. 12 (02), 337377.Google Scholar
Ikeda, S., Yamada, T. & Toda, Y. 2001 Numerical study on turbulent flow and honami in and above flexible plant canopy. Intl J. Heat Fluid Flow 22 (3), 252258.Google Scholar
Jin, Y., Kim, J. & Chamorro, L. P. 2018 Instability-driven frequency decoupling between structure dynamics and wake fluctuations. Phys. Rev. Fluids 3 (4), 044701.Google Scholar
Kottapalli, A. G. P., Bora, M., Asadnia, M., Miao, J., Venkatraman, S. S. & Triantafyllou, M. 2016 Nanofibril scaffold assisted MEMS artificial hydrogel neuromasts for enhanced sensitivity flow sensing. Sci. Rep. 6, 19336.Google Scholar
Kunze, S. & Brücker, C. 2012 Control of vortex shedding on a circular cylinder using self-adaptive hairy-flaps. C. R. Méc. 340 (1–2), 4156.Google Scholar
Küttler, U. & Wall, W. A. 2008 Fixed-point fluid-structure interaction solvers with dynamic relaxation. Comput. Mech. 43 (1), 6172.Google Scholar
de Langre, E. 2008 Effects of wind on plants. Annu. Rev. Fluid Mech. 40 (1), 141168.Google Scholar
Leclercq, T., Peake, N. & de Langre, E. 2018 Does flutter prevent drag reduction by reconfiguration? Proc. R. Soc. Lond. A 474 (2209), 20170678.Google Scholar
Lee, J. B., Park, S. G., Kim, B., Ryu, J. & Sung, H. J. 2017 Heat transfer enhancement by flexible flags clamped vertically in a Poiseuille channel flow. Intl J. Heat Mass Transfer 107, 391402.Google Scholar
Lee, J. B., Park, S. G. & Sung, H. J. 2018 Heat transfer enhancement by asymmetrically clamped flexible flags in a channel flow. Intl J. Heat Mass Transfer 116, 10031015.Google Scholar
Li, Z., Favier, J., D’Ortona, U. & Poncet, S. 2016 An immersed boundary-lattice Boltzmann method for single- and multi-component fluid flows. J. Comput. Phys. 304, 424440.Google Scholar
Masoud, H. & Alexeev, A. 2011 Harnessing synthetic cilia to regulate motion of microparticles. Soft Matt. 7 (19), 87028708.Google Scholar
Mazellier, N., Feuvrier, A. & Kourta, A. 2012 Biomimetic bluff body drag reduction by self-adaptive porous flaps. C. R. Méc. 340 (1–2), 8194.Google Scholar
Mittal, R. & Iaccarino, G. 2005 Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239261.Google Scholar
Nepf, H. M. 2012a Flow and transport in regions with aquatic vegetation. Annu. Rev. Fluid Mech. 44, 123142.Google Scholar
Nepf, H. M. 2012b Hydrodynamics of vegetated channels. J. Hydraul. Res. 50 (3), 262279.Google Scholar
Nepf, H. M. & Vivoni, E. R. 2000 Flow structure in depth-limited, vegetated flow. J. Geophys. Res. 105 (C12), 2854728557.Google Scholar
Peskin, C. S. 2002 The immersed boundary method. Acta Numer. 11, 479517.Google Scholar
Pinelli, A., Naqavi, I. Z., Piomelli, U. & Favier, J. 2010 Immersed-boundary methods for general finite-difference and finite-volume Navier–Stokes solvers. J. Comput. Phys. 229 (24), 90739091.Google Scholar
Py, C., de Langre, E. & Moulia, B. 2004 The mixing layer instability of wind over a flexible crop canopy. C. R. Méc. 332 (8), 613618.Google Scholar
Py, C., de Langre, E. & Moulia, B. 2006 A frequency lock-in mechanism in the interaction between wind and crop canopies. J. Fluid Mech. 568, 425449.Google Scholar
Py, C., de Langre, E., Moulia, B. & Hémon, P. 2005 Measurement of wind-induced motion of crop canopies from digital video images. Agric. Forest Meteorol. 130 (3–4), 223236.Google Scholar
Revell, A., O’Connor, J., Sarkar, A., Li, C., Favier, J., Kamps, L. & Brücker, C. 2017 The PELskin project: part II – investigating the physical coupling between flexible filaments in an oscillating flow. Meccanica 52 (8), 17811795.Google Scholar
Roma, A. M., Peskin, C. S. & Berger, M. J. 1999 An adaptive version of the immersed boundary method. J. Comput. Phys. 153 (2), 509534.Google Scholar
Shan, X. & He, X. 1998 Discretization of the velocity space in the solution of the Boltzmann equation. Phys. Rev. Lett. 80 (1), 6568.Google Scholar
Shan, X., Yuan, X. & Chen, H. 2006 Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation. J. Fluid Mech. 550, 413441.Google Scholar
Shelley, M., Vandenberghe, N. & Zhang, J. 2005 Heavy flags undergo spontaneous oscillations in flowing water. Phys. Rev. Lett. 94, 094302.Google Scholar
Singh, R., Bandi, M. M., Mahadevan, A. & Mandre, S. 2016 Linear stability analysis for monami in a submerged seagrass bed. J. Fluid Mech. 786, R1.Google Scholar
den Toonder, J. M. J. & Onck, P. R. 2013 Microfluidic manipulation with artificial/bioinspired cilia. Trends Biotechnol. 31 (2), 8591.Google Scholar
Venkataraman, D. & Bottaro, A. 2012 Numerical modeling of flow control on a symmetric aerofoil via a porous, compliant coating. Phys. Fluids 24, 093601.Google Scholar
Wu, J. & Shu, C. 2009 Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications. J. Comput. Phys. 228 (6), 19631979.Google Scholar
Zienkiewicz, O. C., Taylor, R. L. & Fox, D. 2014 The Finite Element Method for Solid and Structural Mechanics, 7th edn. Butterworth-Heinemann.Google Scholar
Zienkiewicz, O. C., Taylor, R. L. & Zhu, J. Z. 2013 The Finite Element Method: its Basis and Fundamentals, 7th edn. Butterworth-Heinemann.Google Scholar