Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T14:02:39.583Z Has data issue: false hasContentIssue false

Drops sliding down an incline at large contact line velocity: What happens on the road towards rolling?

Published online by Cambridge University Press:  05 December 2013

Laurent Limat*
Affiliation:
Matière et Systèmes Complexes, UMR 7057 of CNRS, and Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France
*
Email address for correspondence: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Drops sliding down an incline exhibit fascinating shapes, which indirectly provide a great deal of information about wetting dynamics. Puthenveettil, Kumar & Hopfinger (J. Fluid Mech., vol. 726, 2013, pp. 26–61) have renewed this subject by considering water and mercury drops sliding at high speed. The results raise puzzling questions: how to take into account inertia at a high-speed contact line, large contact angles, the nature of the dissipation at small scale and sliding versus rolling behaviours?

Type
Focus on Fluids
Copyright
©2013 Cambridge University Press 

References

Blake, T. D. & Ruschak, K. J. 1979 A maximal speed of wetting. Nature 489, 489491.CrossRefGoogle Scholar
Dussan, V. E. B. 1985 On the ability of drops or bubbles to stick to non-horizontal surfaces of solids. Part 2: small drops or bubbles having contact angles of arbitrary size. J. Fluid Mech. 151, 120.Google Scholar
Kim, H.-Y., Lee, H.-J. & Kang, B.-H. 2002 Sliding of liquid drops down an inclined solid surface. J. Colloid Sci. 247, 372380.Google Scholar
Le Grand, N., Daerr, A. & Limat, L. 2005 Shape and motion of drops sliding down an inclined plane. J. Fluid Mech. 541, 293315.Google Scholar
Limat, L. & Stone, H. A. 2004 Three-dimensional lubrication model of a contact line corner singularity. Europhys. Lett. 65, 365371.CrossRefGoogle Scholar
Maglio, M. & Legendre, D. 2013 Numerical simulation of sliding drops on an inclined solid surface. In Computational and Experimental Fluid Mechanics with Applications to Physics, Engineering and the Environment (ed. Sigalotti, L., Klapp, J. & Sira, E.), Springer.Google Scholar
Mahadevan, L. & Pomeau, Y. 1999 Rolling droplets. Phys. Fluids 11, 24492452.Google Scholar
Peters, I, Snoeijer, J. H., Daerr, A & Limat, L. 2009 Coexistence of two singularities in dewetting flows: regularizing the corner tip. Phys. Rev. Lett. 103, 114501.Google Scholar
Petrov, P. G. & Petrov, I. G. 1992 A combined molecular–hydrodynamic approach to wetting kinetics. Langmuir 8, 17621767.CrossRefGoogle Scholar
Podgorski, T., Flesselles, J.-M. & Limat, L. 2001 Corners, cusps and pearls in running drops. Phys. Rev. Lett. 87, 036102036105.Google Scholar
Puthenveettil, B. A., Kumar, V. K. & Hopfinger, E. J. 2013 Motion of drops on inclined surfaces in the inertial regime. J. Fluid Mech. 726, 2661.CrossRefGoogle Scholar
Richard, D. & Quéré, D. 1999 Viscous drops rolling on a tilted non-wettable solid. Europhys. Lett. 3, 286291.Google Scholar
Rolley, E. & Guthmann, C. 2007 Dynamics and hysteresis of the contact line between liquid hydrogen and cesium substrates. Phys. Rev. Lett. 98, 166105.Google Scholar
Snoeijer, J. H., Le Grand, N., Limat, L., Stone, H. A. & Eggers, J. 2007 Cornered drops and rivulets. Phys. Fluids 19, 042104.CrossRefGoogle Scholar
Snoeijer, J. H., Rio, E., Le Grand, N. & Limat, L. 2005 Self-similar flow and contact line geometry at the rear of cornered drops. Phys. Fluids 17, 072101.Google Scholar
Thampi, S. P., Adhikari, R. & Govindarajan, R. 2013 Do liquid drops roll or slide on inclined surfaces? Langmuir 29, 33393346.Google Scholar
Winkels, K. G., Peters, I. R., Evangelista, F., Riepen, M., Daerr, A., Limat, L. & Snoeijer, J. H. 2011 Receding contact lines: from sliding drops to immersion lithography. Eur. Phys. J. Spec. Top. 192, 195205.Google Scholar