Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-22T14:25:53.107Z Has data issue: false hasContentIssue false

Drift and deformation of oil slicks due to surface waves

Published online by Cambridge University Press:  10 February 2009

K. H. CHRISTENSEN*
Affiliation:
Department of Geosciences, University of Oslo, N-0315 Oslo, Norway
E. TERRILE
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
*
Email address for correspondence: [email protected]

Abstract

We present a theoretical model for the wave-induced drift and horizontal deformation of an oil slick. The waves and the mean flow are coupled through the influence of the mean flow on the concentration of slick material, which in turn determines the damping rate of the waves and hence the transfer of momentum from the waves to the mean flow. We also briefly discuss a simplified version of the model that can be used when remote sensing data are available. With this simpler model the wave-induced forcing of the mean flow is obtained directly from observations of the wave field, hence knowledge of any specific slick properties is not required.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alpers, W. & Hühnerfuss, H. 1988 Radar signatures of oil films floating on the sea surface and the Marangoni effect. J. Geophys. Res. 93 (C4), 36423648.CrossRefGoogle Scholar
Andrews, D. G. & McIntyre, M. E. 1978 An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech. 84, 609646.CrossRefGoogle Scholar
ASCE (Task committee on Modeling of Oil Spills). 1996 State-of-the-art review of modeling transport and fate of oil spills. J. Hydr. Engng 122 (11), 594609.CrossRefGoogle Scholar
Balk, A. M. 2006 Wave turbulent diffusion due to the doppler shift. J. Stat. Mech. 1–13. doi:10.1088/1742-5488/2006/p08018.CrossRefGoogle Scholar
Broström, G., Christensen, K. H. & Weber, J. E. H. 2008 A quasi-eulerian, quasi-lagrangian view of surface-wave-induced flow in the ocean. J. Phys. Oceanogr. 38 (5), 11221130.CrossRefGoogle Scholar
Christensen, K. H. 2005 Transient and steady drift currents in waves damped by surfactants. Phys. Fluids 17, 042102.CrossRefGoogle Scholar
Christensen, K. H. & Weber, J. E. 2005 a Drift of an inextensible sheet caused by surface waves. Environ. Fluid Mech. 5, 495505.CrossRefGoogle Scholar
Christensen, K. H. & Weber, J. E. 2005 b Wave-induced drift of large floating sheets. Geophys. Astro. Fluid Dyn. 99, 433443.CrossRefGoogle Scholar
Craik, A. D. D. 1982 The drift velocity of water waves. J. Fluid Mech. 116, 187205.CrossRefGoogle Scholar
Dorrestein, R. 1951 General linearized theory of the effect of surface films on water ripples. Proc. K. Ned. Akad. Wet., Ser. B: Phys. Sci. B 54, 260272, 350356.Google Scholar
Gaster, M. 1962 A note on the relationship between temporally increasing and spatially increasing disturbances in hydrodynamic stability. J. Fluid Mech. 14, 222224.CrossRefGoogle Scholar
Gushchin, L. A. & Ermakov, S. A. 2003 Laboratory study of surfactant redistribution in the flow field induced by surface waves. Izvestiya Atmos. Oceanic Phys. 40 (2), 244249.Google Scholar
Hansen, R. S. & Ahmad, J. 1971 Waves at interfaces. In Progress in surface and membrane science, (ed. Danielli, J. F., Rosenberg, M. D. & Cadenhead, D. A.), vol. 4, pp. 156. Academic Press.Google Scholar
Harper, J. F. & Dixon, J. N. 1974 The leading edge of a surface film on contaminated flowing water. In Fifth Australasian Conference on Hydraulics and Fluid Mechanics, Christchurch, New Zealand, pp. 499–505.Google Scholar
Herterich, K. & Hasselmann, K. 1982 The horizontal diffusion of tracers by surface-waves. J. Phys. Oceanogr. 12 (7), 704711.2.0.CO;2>CrossRefGoogle Scholar
Jenkins, A. D. 1989 The use of a wave prediction model for driving a near-surface current model. D. Hydrogr. Z. 42, 133149.CrossRefGoogle Scholar
Jenkins, A. D. & Ardhuin, F. 2004 Interaction of ocean waves and currents: how different approaches may be reconciled. ISOPE Proc. 3, 105111.Google Scholar
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
Law, A. W. K. 1999 Wave-induced surface drift of an inextensible thin film. Ocean Engng 26, 11451168.CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1953 Mass transport in water waves. Philos. Trans. R. Soc., Ser. A 245, 535581.Google Scholar
Longuet-Higgins, M. S. 1969 A nonlinear mechanism for the generation of sea waves. Proc. R. Soc. A 311, 371389.Google Scholar
Longuet-Higgins, M. S. 1986 Eulerian and Lagrangian aspects of surface waves. J. Fluid Mech. 173, 683707.CrossRefGoogle Scholar
Lucassen, J. 1968 Longitudinal capillary waves. Trans. Faraday Soc. 64, 22212235.CrossRefGoogle Scholar
Lucassen-Reynders, E. H. & Lucassen, J. 1969 Properties of capillary waves. Adv. Colloid Interface Sci. 2, 347395.CrossRefGoogle Scholar
Marmorino, G. O., Smith, G. B., Toporkov, J. V., Sletten, M. A., Perkovic, D. & Frasier, S. J. 2008 Evolution of ocean slicks under a rising wind. J. Geophys. Res. 113 (C4), C04030. doi:10.1029/2007JC004538.Google Scholar
Mass, J. T. & Milgram, J. H. 1998 Dynamic behavior of natural sea surfactant films. J. Geophys. Res. 103, 1569515715.CrossRefGoogle Scholar
McIntyre, M. E. 1988 A note on the divergence effect and the Lagrangian-mean surface elevation in periodic water waves. J. Fluid Mech. 189, 235–42.CrossRefGoogle Scholar
McWilliams, J. C., Sullivan, P. P. & Moeng, C. H. 1997 Langmuir turbulence in the ocean. J. Fluid Mech. 334, 130.CrossRefGoogle Scholar
Melsom, A. 1992 Wave-induced roll motion beneath an ice cover. J. Phys. Oceanogr. 22 (1), 1928.2.0.CO;2>CrossRefGoogle Scholar
Mockros, L. F. & Krone, R. B. 1968 Hydrodynamic effects on an interfacial film. Science 161, 361363.CrossRefGoogle Scholar
Phillips, O. M. 1977 The Dynamics of the Upper Ocean. Cambridge University Press.Google Scholar
Pierson, W. J. 1962 Perturbation analysis of the Navier–Stokes equations in Lagrangian form with selected linear solutions. J. Geophys. Res. 67 (8), 31513160.CrossRefGoogle Scholar
Pollard, R. T. 1970 Surface waves with rotation: an exact solution. J. Geophys. Res. 75 (30), 58955898.CrossRefGoogle Scholar
Polton, J. A. & Belcher, S. E. 2007 Langmuir turbulence and deeply penetrating jets in an unstratified mixed layer. J. Geophys. Res. 112 (C9), C09020. doi:10.1029/2007JC004205.Google Scholar
Rusanov, V. V. 1961 Calculation of interaction of non-steady shock waves with obstacles. J. Comput. Math. Phys. USSR 1, 267279.Google Scholar
Saetra, Ø. 1998 Effects of surface film on the linear stability of an air-sea interface. J. Fluid Mech. 357, 5981.CrossRefGoogle Scholar
Vogel, M. J. & Hirsa, A. H. 2002 Concentration measurements downstream of an insoluble monolayer front. J. Fluid Mech. 472, 283305.CrossRefGoogle Scholar
Vucelja, M., Falkovich, G. & Fouxon, I. 2007 Clustering of matter in waves and currents. Phys. Rev. E 75 (6), 065301–1.Google ScholarPubMed
Weber, J. E. 1983 Attenuated wave-induced drift in a viscous rotating ocean. J. Fluid Mech. 137, 115129.CrossRefGoogle Scholar
Weber, J. E. 2001 Virtual wave stress and mean drift in spatially damped surface waves. J. Geophys. Res. 106, 1165311657.CrossRefGoogle Scholar
Weber, J. E. 2003 Wave-induced mass transport in the oceanic surface layer. J. Phys. Oceanogr. 33, 25272533.2.0.CO;2>CrossRefGoogle Scholar
Weber, J. E. H., Broström, G. & Saetra, Ø. 2006 Eulerian vs lagrangian approaches to the wave-induced transport in the upper ocean. J. Phys. Oceanogr. 36, 21062118.CrossRefGoogle Scholar
Weber, J. E. & Saetra, Ø. 1995 Effect of film elasticity on the drift velocity of capillary-gravity waves. Phys. Fluids 7, 307314.CrossRefGoogle Scholar
Welander, P. 1963 On the generation of wind streaks on the sea surface by the action of a surface film. Tellus 15, 6771.CrossRefGoogle Scholar
Wong, P. C. Y. & Law, A. W. K. 2003 Wave-induced drift of an elliptical surface film. Ocean Engng 30, 413436.CrossRefGoogle Scholar