Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-12-02T22:04:34.877Z Has data issue: false hasContentIssue false

Crossflow instability in a hypersonic boundary layer

Published online by Cambridge University Press:  27 October 2016

Stuart A. Craig*
Affiliation:
Department of Aerospace & Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843, USA
William S. Saric
Affiliation:
Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843, USA
*
Email address for correspondence: [email protected]

Abstract

The crossflow instability in a hypersonic, laminar boundary layer is investigated using point measurements inside the boundary layer for the first time. Experiments are performed on a 7° right, circular cone with an adiabatic wall condition at 5.6° angle of incidence in the low-disturbance Mach 6 Quiet Tunnel at Texas A&M University. Measurements are made with a constant-temperature hot-wire anemometer system with a frequency response up to 180 kHz. Stationary crossflow waves are observed to grow and saturate. A travelling wave coexists with the stationary wave and occurs in a frequency band centred around 35 kHz. A type-I secondary instability is also observed in a frequency band centred around 110 kHz. The behaviour of all three modes is largely consistent with their low-speed counterparts prior to saturation of the stationary wave. Afterward, the behaviour remains in partial agreement with the low-speed case. Neither type-II secondary instability nor transition to turbulence are observed in this study.

Type
Papers
Copyright
© Cambridge University Press 2016. This is a work of the U.S. Government and is not subject to copyright protection in the United States. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. C. Jr. 1971 Three-dimensional laminar boundary-layer analysis of upwash patterns and entrained vortex formation on sharp cones at angle of attack. Tech. Rep. AEDC-TR-71-215.Google Scholar
Balakumar, P.2009 Stability of Supersonic Boundary Layers on a Cone at an Angle of Attack. In 39th AIAA Fluid Dynamics Conference, San Antonio, TX, AIAA 2009-3555.Google Scholar
Balakumar, P. & Owens, L. R.2010 Stability of Hypersonic Boundary Layers on a Cone at an Angle of Attack. In 40th AIAA Fluid Dynamics Conference and Exhibit, Chicago, IL, AIAA 2010-4718.Google Scholar
Bippes, H. 1999 Basic experiments on transition in three-dimensional boundary layers dominated by crossflow instability. Prog. Aerosp. Sci. 35 (4), 363412.CrossRefGoogle Scholar
Blanchard, A. E., Lachowicz, J. T. & Wilkinson, S. P. 1997 NASA langley Mach 6 quiet wind-tunnel performance. AIAA J. 35 (1), 2328.CrossRefGoogle Scholar
Bonfigli, G. & Kloker, M. 2007 Secondary instability of crossflow vortices: validation of the stability theory by direct numerical simulation. J. Fluid Mech. 583, 229272.CrossRefGoogle Scholar
Borg, M. P., Kimmel, R. L. & Stanfield, S. 2015 Traveling crossflow instability for the HIFiRE-5 Elliptic Cone. J. Spacecr. Rockets 52 (3), 664673.CrossRefGoogle Scholar
Chen, F.-J., Wilkinson, S. P. & Beckwith, I. E. 1993 Görtler instability and hypersonic quiet nozzle design. J. Spacecr. Rockets 30 (2), 170175.CrossRefGoogle Scholar
Choudhari, M. M., Chang, C.-L., Jentink, T., Li, F., Berger, K., Candler, G. & Kimmel, R.2009 Transition analysis for the HIFiRE-5 vehicle. In 39th AIAA Fluid Dynamics Conference, AIAA 2009-4056.Google Scholar
Deyhle, H. & Bippes, H. 1996 Disturbance growth in an unstable three-dimensional boundary layer and its dependence on environmental conditions. J. Fluid Mech. 316, 73113.CrossRefGoogle Scholar
Dolvin, D. J.2008 Hypersonic international flight research and experimentation (HIFiRE). In 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, AIAA 2008-2581.Google Scholar
Gosse, R., Kimmel, R. L. & Johnson, H. B. 2014 Study of boundary-layer transition on hypersonic international flight research experimentation 5. J. Spacecr. Rockets 51 (1), 151162.CrossRefGoogle Scholar
Gronvall, J. E., Johnson, H. B. & Candler, G. V.2012 Hypersonic three-dimensional boundary layer transition on a cone at angle of attack. In 42nd AIAA Fluid Dynamic Conference, New Orleans, LA, AIAA 2012-2822.Google Scholar
Hinich, M. J. & Clay, C. S. 1968 The application of the discrete Fourier transform in the estimation of power spectra, coherence, and bispectra of geophysical data. Rev. Geophys. 6 (3), 347.CrossRefGoogle Scholar
Hinich, M. J. & Wolinsky, M. 2005 Normalizing bispectra. J. Stat. Planning Inference 130, 405411.CrossRefGoogle Scholar
Hofferth, J. W.2013 Boundary-layer stability and transition on a flared cone in a Mach 6 quiet wind tunnel. Doctoral dissertation, Texas A&M University.CrossRefGoogle Scholar
Hofferth, J. W., Bowersox, R. D. W. & Saric, W. S.2010 The Mach 6 quiet tunnel at Texas A&M: quiet flow performance. In 27th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Chicago, IL, AIAA 2010-4794.Google Scholar
Hofferth, J. W., Humble, R. A., Floryan, D. C. & Saric, W. S.2013 High-bandwidth optical measurements of the second-mode instability in a Mach 6 quiet tunnel. In 51st AIAA Aerospace Sciences Meeting, Grapevine, TX, AIAA 2013-0378.Google Scholar
Hofferth, J. W. & Saric, W. S.2012 Boundary-layer transition on a flared cone in the Texas A&M Mach 6 quiet tunnel. In 50th AIAA Aerospace Sciences Meeting, Nashville, TN, AIAA 2012-0923.Google Scholar
Juliano, T. J., Borg, M. P. & Schneider, S. P. 2015 Quiet tunnel measurements of HIFiRE-5 boundary-layer transition. AIAA J. 53 (4), 832846.CrossRefGoogle Scholar
Kohama, Y. 1987 Some expectation on the mechanism of cross-flow instability in a swept wing flow. Acta Mechanica 66 (1–4), 2138.CrossRefGoogle Scholar
Kohama, Y., Saric, W. S. & Hoos, J. A. 1991 A high-frequency, secondary instability of crossflow vortices that leads to transition. In Proceedings of Royal Aero. Soc. Conf. on Boundary-Layer Transition and Control, Cambridge University, pp. 4.1–4.13.Google Scholar
Kovasznay, L. S. G. 1950 The hot-wire anemometer in supersonic flow. J. Aero. Sci. 17 (9), 565572.Google Scholar
van den Kroonenberg, A., Radespiel, R., Candler, G. V. & Estorf, M.2010 Infrared measurements of boundary-layer transition on an inclined cone at Mach 6, In 48th AIAA Aerospace Sciences Meeting, Orlando, FL, AIAA 2010-1063.Google Scholar
Kuehl, J. J., Perez, E. & Reed, H. L.2012 JoKHeR: NPSE Simulations of Hypersonic Crossflow Instability. In 50th AIAA Aerospace Sciences Meeting, Nashville, TN, AIAA 2012-0921.Google Scholar
Li, F., Choudhari, M. M., Chang, C.-L., White, J., Kimmel, R. L., Adamczak, D., Borg, M. P., Stanfield, S. A. & Smith, M.2012 Stability analysis for HIFiRE experiments. In 42nd AIAA Fluid Dynamics Conference, AIAA 2012-2961.Google Scholar
Mack, L. M.1984 Boundary-Layer linear stability theory, AGARD Report No. 709.Google Scholar
Malik, M. R., Li, F. & Chang, C.-L. 1996 Nonlinear crossflow disturbances and secondary instabilities in swept-wing boundary layers. In IUTAM Symposium on Nonlinear Instability and Transition in Three-Dimensional Boundary Layers (ed. Hall, P. W. & Duck, P. W.), pp. 257266. Springer.CrossRefGoogle Scholar
Malik, M. R., Li, F., Choudhari, M. M. & Chang, C.-L. 1999 Secondary instability of crossflow vortices and swept-wing boundary-layer transition. J. Fluid Mech. 399, 85115.CrossRefGoogle Scholar
Moyes, A., Paredes, P., Kocian, T. S. & Reed, H. L.2016 Secondary Instability Analysis of Crossflow on a Hypersonic Yawed Straight Circular Cone. In 54th AIAA Aerospace Sciences Meeting, AIAA 2016-0848.Google Scholar
Muñoz, F., Heitmann, D. & Radespiel, R. 2014 Instability modes in boundary layers of an inclined cone at Mach 6. J. Spacecr. Rockets 51 (2), 442454.CrossRefGoogle Scholar
Oliviero, N. B., Kocian, T. S., Moyes, A. J. & Reed, H. L.2015 EPIC: NPSE Analysis of Hypersonic Crossflow Instability. In 45th AIAA Fluid Dynamics Conference, AIAA 2015-2772.Google Scholar
Parziale, N. J., Shepherd, J. E. & Hornung, H. G. 2013 Differential interferometric measurement of instability in a hypervelocity boundary layer. AIAA J. 51 (3), 750754.CrossRefGoogle Scholar
Parziale, N. J., Shepherd, J. E. & Hornung, H. G. 2015 Observations of hypervelocity boundary-layer instability. J. Fluid Mech. 781, 87112.CrossRefGoogle Scholar
Perez, E., Reed, H. L. & Kuehl, J. J.2013 Instabilities on a hypersonic yawed straight cone. In 43rd AIAA Fluid Dynamics Conference, San Diego, CA, AIAA 2013-2879.Google Scholar
Reed, H. L. & Saric, W. S. 1989 Stability of three-dimensional boundary layers. Annu. Rev. Fluid Mech. 21 (1), 235284.CrossRefGoogle Scholar
Saric, W. S., Reed, H. L. & White, E. B. 2003 Stability and transition of three-dimensional boundary layers. Annu. Rev. Fluid Mech. 35 (1), 413440.CrossRefGoogle Scholar
Schmisseur, J. D., Young, J. O. & Schneider, S. P.1996 Measurements of boundary-layer transition on the flat sidewall of a rectangular Mach 4 quiet-flow nozzle. In 34th Aerospace Sciences Meeting and Exhibit, AIAA 96-0852.Google Scholar
Schuele, C. Y., Corke, T. C. & Matlis, E. H. 2013 Control of stationary cross-flow modes in a Mach 3.5 boundary layer using patterned passive and active roughness. J. Fluid Mech. 718, 538.CrossRefGoogle Scholar
Semper, M. T.2013 Examining a hypersonic turbulent boundary layer at low Reynolds number. Doctoral dissertation, Texas A&M University.Google Scholar
Smits, A. J., Hayakawa, K. & Muck, K. C. 1983 Constant temperature hot-wire anemometer practice in supersonic flows - part 1: the normal wire. Exp. Fluids 1 (2), 8392.CrossRefGoogle Scholar
Stetson, K. F. 1982 Mach 6 experiments of transition on a cone at angle of attack. J. Spacecr. Rockets 19 (5), 397403.CrossRefGoogle Scholar
Swanson, E. O. & Schneider, S. P.2010 Boundary-Layer Transition on Cones at Angle of Attack in a Mach-6 Quiet Tunnel. In 49th AIAA Aerospace Sciences Meeting, Orlando, FL, AIAA 2010-1062.Google Scholar
Ward, C. A. C., Henderson, R. O. & Schneider, S. P.2015 Possible Secondary Instability of Stationary Crossflow Vortices on an Inclined Cone at Mach 6. In 45th AIAA Fluid Dynamics Conference, Dallas, TX, AIAA 2015-2773.Google Scholar
Wassermann, P. & Kloker, M. 2002 Mechanisms and passive control of crossflow-vortex-induced transition in a three-dimensional boundary layer. J. Fluid Mech. 456, 4984.CrossRefGoogle Scholar
Welch, P. D. 1967 The use of fast fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15 (2), 7073.CrossRefGoogle Scholar
White, E. B. & Saric, W. S. 2005 Secondary instability of crossflow vortices. J. Fluid Mech. 525, 275308.CrossRefGoogle Scholar