Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
San, Omer
Maulik, Romit
and
Ahmed, Mansoor
2019.
An artificial neural network framework for reduced order modeling of transient flows.
Communications in Nonlinear Science and Numerical Simulation,
Vol. 77,
Issue. ,
p.
271.
Pawar, Suraj
Ahmed, Shady E.
San, Omer
and
Rasheed, Adil
2020.
An Evolve-Then-Correct Reduced Order Model for Hidden Fluid Dynamics.
Mathematics,
Vol. 8,
Issue. 4,
p.
570.
Halder, R.
Damodaran, M.
and
Khoo, B. C.
2020.
Deep Learning Based Reduced Order Model for Airfoil-Gust and Aeroelastic Interaction.
AIAA Journal,
Vol. 58,
Issue. 10,
p.
4304.
Frank, Michael
Drikakis, Dimitris
and
Charissis, Vassilis
2020.
Machine-Learning Methods for Computational Science and Engineering.
Computation,
Vol. 8,
Issue. 1,
p.
15.
Fukami, Kai
Fukagata, Koji
and
Taira, Kunihiko
2020.
Assessment of supervised machine learning methods for fluid flows.
Theoretical and Computational Fluid Dynamics,
Vol. 34,
Issue. 4,
p.
497.
Costa Nogueira, Alberto
de Sousa Almeida, João Lucas
Auger, Guillaume
and
Watson, Campbell D.
2020.
High Performance Computing.
Vol. 12321,
Issue. ,
p.
116.
Peng, Jiang-Zhou
Chen, Siheng
Aubry, Nadine
Chen, Zhi-Hua
and
Wu, Wei-Tao
2020.
Time-variant prediction of flow over an airfoil using deep neural network.
Physics of Fluids,
Vol. 32,
Issue. 12,
Zhang, Jincheng
and
Zhao, Xiaowei
2020.
A novel dynamic wind farm wake model based on deep learning.
Applied Energy,
Vol. 277,
Issue. ,
p.
115552.
Gao, Han
Wang, Jian-Xun
and
Zahr, Matthew J.
2020.
Non-intrusive model reduction of large-scale, nonlinear dynamical systems using deep learning.
Physica D: Nonlinear Phenomena,
Vol. 412,
Issue. ,
p.
132614.
Linot, Alec J.
and
Graham, Michael D.
2020.
Deep learning to discover and predict dynamics on an inertial manifold.
Physical Review E,
Vol. 101,
Issue. 6,
Kaneko, Kento
Tsai, Ping-Hsuan
and
Fischer, Paul
2020.
Towards model order reduction for fluid-thermal analysis.
Nuclear Engineering and Design,
Vol. 370,
Issue. ,
p.
110866.
Peng, Jiang-Zhou
Chen, Siheng
Aubry, Nadine
Chen, Zhihua
and
Wu, Wei-Tao
2020.
Unsteady reduced-order model of flow over cylinders based on convolutional and deconvolutional neural network structure.
Physics of Fluids,
Vol. 32,
Issue. 12,
Zucatti, Victor
Lui, Hugo F. S.
Pitz, Diogo B.
and
Wolf, William R.
2020.
Assessment of reduced-order modeling strategies for convective heat transfer.
Numerical Heat Transfer, Part A: Applications,
Vol. 77,
Issue. 7,
p.
702.
Taira, Kunihiko
Hemati, Maziar S.
Brunton, Steven L.
Sun, Yiyang
Duraisamy, Karthik
Bagheri, Shervin
Dawson, Scott T. M.
and
Yeh, Chi-An
2020.
Modal Analysis of Fluid Flows: Applications and Outlook.
AIAA Journal,
Vol. 58,
Issue. 3,
p.
998.
Zucatti, Victor
and
Wolf, William
2021.
Assessment of projection-based reduced-order modeling strategies for unsteady flows.
Zucatti, Victor
Wolf, William
and
Bergmann, Michel
2021.
Calibration of projection-based reduced-order models for unsteady compressible flows.
Journal of Computational Physics,
Vol. 433,
Issue. ,
p.
110196.
Queiroz, L.H.
Santos, F.P.
Oliveira, J.P.
and
Souza, M.B.
2021.
Physics-Informed deep learning to predict flow fields in cyclone separators.
Digital Chemical Engineering,
Vol. 1,
Issue. ,
p.
100002.
Lui, Hugo
and
Wolf, William
2021.
Convolutional Neural Networks for the Construction of Surrogate Models of Fluid Flows.
Lesjak, Mathias
and
Doan, Nguyen Anh Khoa
2021.
Chaotic systems learning with hybrid echo state network/proper orthogonal decomposition based model.
Data-Centric Engineering,
Vol. 2,
Issue. ,
Halawa, Basem
Xu, Chengzhu
and
Zhou, Qi
2021.
Reduced-order representation of stratified wakes by proper orthogonal decomposition utilizing translational symmetry.
Journal of Visualization,
Vol. 24,
Issue. 3,
p.
485.