Published online by Cambridge University Press: 19 March 2014
This study investigates the collision statistics of inertial particles in inverse-cascading two-dimensional (2D) homogeneous isotropic turbulence by means of a direct numerical simulation (DNS). A collision kernel model for particles with small Stokes number ($\mathit{St}$) in 2D flows is proposed based on the model of Saffman & Turner (J. Fluid Mech., vol. 1, 1956, pp. 16–30) (ST56 model). The DNS results agree with this 2D version of the ST56 model for $\mathit{St}\lesssim 0.1$. It is then confirmed that our DNS results satisfy the 2D version of the spherical formulation of the collision kernel. The fact that the flatness factor stays around 3 in our 2D flow confirms that the present 2D turbulent flow is nearly intermittency-free. Collision statistics for $\mathit{St}= 0.1$, 0.4 and 0.6, i.e. for $\mathit{St}<1$, are obtained from the present 2D DNS and compared with those obtained from the three-dimensional (3D) DNS of Onishi et al. (J. Comput. Phys., vol. 242, 2013, pp. 809–827). We have observed that the 3D radial distribution function at contact ($g(R)$, the so-called clustering effect) decreases for $\mathit{St}= 0.4$ and 0.6 with increasing Reynolds number, while the 2D $g(R)$ does not show a significant dependence on Reynolds number. This observation supports the view that the Reynolds-number dependence of $g(R)$ observed in three dimensions is due to internal intermittency of the 3D turbulence. We have further investigated the local $\mathit{St}$, which is a function of the local flow strain rates, and proposed a plausible mechanism that can explain the Reynolds-number dependence of $g(R)$. Meanwhile, 2D stochastic simulations based on the Smoluchowski equations for $\mathit{St}\ll 1$ show that the collision growth can be predicted by the 2D ST56 model and that rare but strong events do not play a significant role in such a small-$\mathit{St}$ particle system. However, the probability density function of local $\mathit{St}$ at the sites of colliding particle pairs supports the view that powerful rare events can be important for particle growth even in the absence of internal intermittency when $\mathit{St}$ is not much smaller than unity.