Article contents
Chemical production on a deforming substrate
Published online by Cambridge University Press: 11 January 2022
Abstract
The interplay between chemical reaction and substrate deformation is discussed by adapting Ranz's formulation for scalar mixing to the case of a reactive mixture between segregated reactants, initially separated by an interface whose thickness may not be vanishingly small. Experiments in a simple shear flow demonstrate the existence of three regimes depending on the Damköhler number $Da=t_s/t_c$ where $t_s$ is the mixing time of the interface width and $t_c$ is the chemical time. Instead of treating explicitly the chemical cross-term, we rationalize these different regimes by globalizing it as a production term involving a flux which depends on the rate at which the reaction zone is fed by the reactants, a formulation valid for $Da>1$. For $Da<1$, the reactants interpenetrate before they react, giving rise to a ‘diffusio-chemical’ regime where chemical production occurs within a substrate whose width is controlled by molecular diffusion.
JFM classification
- Type
- JFM Rapids
- Information
- Copyright
- © The Author(s), 2022. Published by Cambridge University Press
References
REFERENCES
- 4
- Cited by