Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T16:59:34.687Z Has data issue: false hasContentIssue false

Calculation of axisymmetric jets and wakes with a three-equation model of turbulence

Published online by Cambridge University Press:  12 April 2006

Sedat Biringen
Affiliation:
Von Kármán Institute, Rhode-St-Genèse, Belgium Present address: Mechanical Engineering Department, Bogaziçi University, P.K. 2, Bebek, Istanbul, Turkey.

Abstract

The concept of diffusion by bulk convection formulated by Bradshaw is applied to the transport equations for the turbulent kinetic energy, turbulent shear stress and an integral length scale. The resulting set of hyperbolic partial differential equations is solved by an explicit finite-difference scheme for the cases of incompressible axisymmetric wakes and jets in a coflowing air stream. It is found that the profiles of mean velocity and shear stress are almost insensitive to the empirical input whereas the profiles of kinetic energy are very sensitive.

Type
Research Article
Copyright
© 1978 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonia, R. A. & Bilger, R. W. 1973 J. Fluid Mech. 61, 805.
Biringen, S. 1975 D.ScA. dissertation, Université Libre de Bruxelles.
Bradshaw, P. 1973 Imp. Coll. Aero Rep. no. 73–05.
Bradshaw, P., Dean, R. C. & Mceligott, D. M. 1972 A.S.M.E. Paper no. 72–WA/FE-25.
Bradshaw, P., Ferriss, D. H. & Atwell, N. P. 1967 J. Fluid Mech. 29, 593.
Champagne, F. H., Harris, V. G. & Corrsin, S. 1970 J. Fluid Mech. 41, 81.
Chevray, R. 1968 Trans. A.S.M.E., J. Basic Engng 90, 275.
Chou, P. Y. 1945 Quart. Appl. Math. 3, 38.
Daly, D. J. & Harlow, F. H. 1970 Phys. Fluids 13, 2634.
Donaldson, C. P. 1971 AGARD Conf. Proc. no. 93, paper B-1.
Hanjalić, K. & Launder, B. E. 1972 J. Fluid Mech. 52, 609.
Kreiss, H. O. 1973 AGARD Lecture Ser. no. 64, paper 1.
Launder, B. E., Reece, G. J. & Rodi, W. 1975 J. Fluid Mech. 68, 537.
Lumley, J. & KHAJEH-NOURI, B. 1974 Adv. Geophys. 184, 169.
Morel, T. & Torda, T. P. 1974 A.I.A.A. J. 12, 533.
Nash, J. F. 1969 J. Fluid Mech. 37, 625.
Nash, J. F. 1972 Trans. A.S.M.E., J. Basic Engng 94, 131.
Pope, S. B. & Whitelaw, J. H. 1976 J. Fluid Mech. 73, 9.
Richtmyer, R. D. & Morton, K. W. 1967 Difference Methods for Initial Value Problems. Wiley.
Rodi, W. 1972 Ph.D. dissertation, University of London.
Rotta, J. C. 1951 Z. Phys. 129, 547.
Rotta, J. C. 1971 AGARD Conf. Proc. no. 93, paper A-3.
Rotta, J. C. 1975 Lecture presented at von Kármán Inst., Belgium, no. VKI LS-76.
Townsend, A. A. 1956 The Structure of Turbulent Shear Flow, 1st edn. Cambridge University Press.
Uberoi, M. S. 1957 J. Appl. Phys. 28, 1165.
Wygnanski, I. & Fiedler, H. E. 1969 J. Fluid Mech. 38, 577.