Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T19:35:30.191Z Has data issue: false hasContentIssue false

Analytic growth rate of gravitational instability in self-gravitating planar polytropes

Published online by Cambridge University Press:  16 November 2018

Jean-Baptiste Durrive*
Affiliation:
Department of Physics and Astrophysics, Nagoya University, Nagoya 464-8602, Japan
Mathieu Langer
Affiliation:
Institut d’Astrophysique Spatiale, CNRS, UMR 8617, Univ. Paris-Sud, Université Paris-Saclay, Bât. 121, 91405 Orsay, France
*
Email address for correspondence: [email protected]

Abstract

Gravitational instability is a key process that may lead to fragmentation of gaseous structures (sheets, filaments, haloes) in astrophysics and cosmology. We introduce here a method to derive analytic expressions for the growth rate of gravitational instability in a plane stratified medium. First, the main strength of our approach is to reduce this intrinsically fourth-order eigenvalue problem to a sequence of second-order problems. Second, an interesting by-product is that the unstable part of the spectrum is computed by making use of its stable part. Third, as an example, we consider a pressure-confined, static, self-gravitating slab of a fluid with an arbitrary polytropic exponent, with either free or rigid boundary conditions. The method can naturally be generalised to analyse the stability of richer, more complex systems. Finally, our analytical results are in excellent agreement with numerical solutions. Their second-order expansions provide a valuable insight into how the rate and wavenumber of maximal instability behave as functions of the polytropic exponent and the external pressure (or, equivalently, the column density of the slab).

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

André, P. 2015 Interstellar filaments and their role in star formation as revealed by Herschel. In Lessons from the Local Group (ed. Freeman, K., Elmegreen, B., Block, D. & Woolway, M.), pp. 7383. Springer.Google Scholar
André, P., Di Francesco, J., Ward-Thompson, D., Inutsuka, S.-I., Pudritz, R. E. & Pineda, J. 2014 From filamentary networks to dense cores in molecular clouds: toward a new paradigm for star formation. In Protostars and Planets VI (ed. Henning, T., Beuther, H., Klessen, R. & Dullemond, C.), chap. 2, pp. 2752. University of Arizona Press.Google Scholar
Anninos, W. Y., Norman, M. L. & Anninos, P. 1995 Nonlinear hydrodynamics of cosmological sheets. Part II. Fragmentation and the gravitational, cooling, and thin-shell instabilities. Astrophys. J. 450, 113.Google Scholar
Bally, J., Langer, W. D., Stark, A. A. & Wilson, R. W. 1987 Filamentary structure in the Orion molecular cloud. Astrophys. J. 312, L45L49.Google Scholar
Bender, C. M. & Orszag, S. A. 1978 Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill.Google Scholar
Bernstein, I. B., Frieman, E. A., Kruskal, M. D. & Kulsrud, R. M. 1958 An energy principle for hydromagnetic stability problems. Proc. R. Soc. Lond. A 244, 1740.Google Scholar
Breysse, P. C., Kamionkowski, M. & Benson, A. 2014 Oscillations and stability of polytropic filaments. Mon. Not. R. Astron. Soc. 437, 26752685.Google Scholar
Burkert, A. & Hartmann, L. 2004 Collapse and fragmentation in finite sheets. Astrophys. J. 616 (1), 288300.Google Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability, International Series of Monographs on Physics, vol. 2. Clarendon Press.Google Scholar
Chandrasekhar, S. & Fermi, E. 1953 Problems of gravitational stability in the presence of a magnetic field. Astrophys. J. 118, 116141.Google Scholar
Clarke, C. J. 1999 The fragmentation of cold slabs: application to the formation of clusters. Mon. Not. R. Astron. Soc. 307, 328336.Google Scholar
Cowling, T. G. 1941 The non-radial oscillations of polytropic stars. Mon. Not. R. Astron. Soc. 101 (8), 367375.Google Scholar
Cox, J. P. 1980 Theory of Stellar Pulsation. Princeton University Press.Google Scholar
Curry, C. L. & McKee, C. F. 2000 Composite polytrope models of molecular clouds. Part I. Theory. Astrophys. J. 528 (2), 734755.Google Scholar
Dekel, A., Birnboim, Y., Engel, G., Freundlich, J., Goerdt, T., Mumcuoglu, M., Neistein, E., Pichon, C., Teyssier, R. & Zinger, E. 2009a Cold streams in early massive hot haloes as the main mode of galaxy formation. Nature 457 (7228), 451454.Google Scholar
Dekel, A., Sari, R. & Ceverino, D. 2009b Formation of massive galaxies at high redshift: cold streams, clumpy disks, and compact spheroids. Astrophys. J. 703 (1), 785801.Google Scholar
Demaerel, T. & Keppens, R. 2016 Linear stability of ideal MHD configurations. Part II. Results for stationary equilibrium configurations. Phys. Plasmas 23 (12), 122118.Google Scholar
Dinnbier, F., Wünsch, R., Whitworth, A. P. & Palouš, J. 2017 Fragmentation of vertically stratified gaseous layers: monolithic or coalescence-driven collapse. Mon. Not. R. Astron. Soc. 466, 44234441.Google Scholar
Elmegreen, B. G. & Elmegreen, D. M. 1978 Star formation in shock-compressed layers. Astrophys. J. 220, 10511062.Google Scholar
Federrath, C. 2016 On the universality of interstellar filaments: theory meets simulations and observations. Mon. Not. R. Astron. Soc. 457 (1), 375388.Google Scholar
Goldreich, P. & Lynden-Bell, D. 1965 I. Gravitational stability of uniformly rotating disks. Mon. Not. R. Astron. Soc. 130 (2), 97124.Google Scholar
Hartmann, L. 2002 Flows, fragmentation, and star formation. Part I. Low-mass stars in Taurus. Astrophys. J. 578, 914924.Google Scholar
Hobbs, A., Read, J., Power, C. & Cole, D. 2013 Thermal instabilities in cooling galactic coronae: fuelling star formation in galactic discs. Mon. Not. R. Astron. Soc. 434 (3), 18491868.Google Scholar
Hobbs, A., Read, J. I., Agertz, O., Iannuzzi, F. & Power, C. 2016 Novel adaptive softening for collisionless N-body simulations: eliminating spurious haloes. Mon. Not. R. Astron. Soc. 458 (1), 468479.Google Scholar
Holmes, M. H. 1995 Introduction to Perturbation Methods, Texts in Applied Mathematics, vol. 20. Springer.Google Scholar
Horedt, G. P. 2004 Polytropes: Applications in Astrophysics and Related Fields, Astrophysics and Space Science Library, vol. 306. Kluwer Academic.Google Scholar
Hosokawa, T., Ôishi, T., Yoshida, T. & Yokosawa, M. 2000 Fragmentation of cosmologically collapsed layers. Publ. Astronom. Soc. Japan 52, 727741.Google Scholar
Hosseinirad, M., Naficy, K., Abbassi, S. & Roshan, M. 2017 Gravitational instability of filamentary molecular clouds, including ambipolar diffusion. Mon. Not. R. Astron. Soc. 465, 16451653.Google Scholar
Inutsuka, S.-I. & Miyama, S. M. 1992 Self-similar solutions and the stability of collapsing isothermal filaments. Astrophys. J. 388, 392399.Google Scholar
Inutsuka, S.-I. & Miyama, S. M. 1997 A production mechanism for clusters of dense cores. Astrophys. J. 480, 681693.Google Scholar
Iwasaki, K., Inutsuka, S.-I. & Tsuribe, T. 2011 Gravitational fragmentation of expanding shells. Part I. Linear analysis. Astrophys. J. 733, 1627.Google Scholar
Jeans, J. H. 1928 Astronomy and Cosmogony. Cambridge University Press.Google Scholar
Kalberla, P. M. W., Kerp, J., Haud, U., Winkel, B., Bekhti, N. B., Flöer, L. & Lenz, D. 2016 Cold Milky Way H i gas in filaments. Astrophys. J. 821 (2), 117141.Google Scholar
Kellman, S. A. 1972 The stability of a self-gravitating nonrotating gas layer with stellar, magnetic, and cosmic-ray components. Part I. Astrophys. J. 175, 363371.Google Scholar
Kellman, S. A. 1973 The stability of a self-gravitating nonrotating gas layer with stellar, magnetic, and cosmic-ray components. Part II. Astrophys. J. 179 (9), 103109.Google Scholar
Keppens, R. & Demaerel, T. 2016 Stability of ideal MHD configurations. Part I. Realizing the generality of the G operator. Phys. Plasmas 23 (12), 122117.Google Scholar
Kereš, D. & Hernquist, L. 2009 Seeding the formation of cold gaseous clouds in Milky Way-size halos. Astrophys. J. 700 (1), L1L5.Google Scholar
Kereš, D., Katz, N., Fardal, M., Davé, R. & Weinberg, D. H. 2009 Galaxies in a simulated 𝛬CDM Universe. Part I. Cold mode and hot cores. Mon. Not. R. Astron. Soc. 395 (1), 160179.Google Scholar
Kim, J.-G., Kim, W.-T., Seo, Y. M. & Hong, S. S. 2012 Gravitational instability of rotating, pressure-confined, polytropic gas disks with vertical stratification. Astrophys. J. 761, 131147.Google Scholar
Klar, J. S. & Mücket, J. P. 2010 A detailed view of filaments and sheets in the warm-hot intergalactic medium. Astron. Astrophys. 522, A114.Google Scholar
Klypin, A. A. & Shandarin, S. F. 1983 Three-dimensional numerical model of the formation of large-scale structure in the Universe. Mon. Not. R. Astron. Soc. 204, 891907.Google Scholar
Lacey, C. G. 1989 Gravitational instability in a primordial collapsing gas cloud. Astrophys. J. 336, 612638.Google Scholar
Langer, W. D. 1978 The stability of interstellar clouds containing magnetic fields. Astrophys. J. 225, 95106.Google Scholar
Larson, R. B. 1985 Cloud fragmentation and stellar masses. Mon. Not. R. Astron. Soc. 214, 379398.Google Scholar
Ledoux, P. 1951 Sur la stabilité gravitationnelle d’une nébuleuse isotherme. Ann. Astrophys. 14, 438446.Google Scholar
Lubow, S. H. & Pringle, J. E. 1993 The gravitational stability of a compressed slab of gas. Mon. Not. R. Astron. Soc. 263, 701706.Google Scholar
Lynden-Bell, D. & Ostriker, J. P. 1967 On the stability of differentially rotating bodies. Mon. Not. R. Astron. Soc. 136, 293310.Google Scholar
Mamatsashvili, G. R. & Rice, W. K. M. 2010 Axisymmetric modes in vertically stratified self-gravitating discs. Mon. Not. R. Astron. Soc. 406, 20502064.Google Scholar
Miyama, S. M., Narita, S. & Hayashi, C. 1987a Fragmentation of isothermal sheet-like clouds. Part I. Solutions of linear and second-order perturbation equations. Prog. Theoret. Phys. 78 (5), 10511064.Google Scholar
Miyama, S. M., Narita, S. & Hayashi, C. 1987b Fragmentation of isothermal sheet-like clouds. Part II. Full nonlinear numerical simulations. Prog. Theoret. Phys. 78 (6), 12731287.Google Scholar
Mizuno, A., Onishi, T., Yonekura, Y., Nagahama, T., Ogawa, H. & Fukui, Y. 1995 Overall distribution of dense molecular gas and star formation in the the Taurus cloud complex. Astrophys. J. 445, L161L165.Google Scholar
Myers, P. C. 2009 Filamentary structure of star-forming complexes. Astrophys. J. 700, 16091625.Google Scholar
Nakano, T. 1988 Gravitational instability of magnetized gaseous disks. Publ. Astronom. Soc. Japan 40, 593604.Google Scholar
Nakano, T. & Nakamura, T. 1978 Gravitational instability of magnetized gaseous disks 6. Publ. Astronom. Soc. Japan 30, 671680.Google Scholar
Narita, S., Miyama, S. M., Kiguchi, M. & Hayashi, C. 1988 Chapter 5. Collapse and fragmentation of isothermal clouds. Prog. Theoret. Phys. Suppl. 96, 6372.Google Scholar
Nelson, D., Vogelsberger, M., Genel, S., Sijacki, D., Keres, D., Springel, V. & Hernquist, L. 2013 Moving mesh cosmology: tracing cosmological gas accretion. Mon. Not. R. Astron. Soc. 429 (4), 33533370.Google Scholar
Oganesyan, R. S. 1960 Gravitational instability of a layer relative to two-dimensional transverse disturbances. Sov. Astron. 4, 434439.Google Scholar
Papaloizou, J. C. & Savonije, G. J. 1991 Instabilities in self-gravitating gaseous discs. Mon. Not. R. Astron. Soc. 248 (3), 353369.Google Scholar
Pudritz, R. E. & Kevlahan, N. K.-R. 2013 Shock interactions, turbulence and the origin of the stellar mass spectrum. Phil. Trans. R. Soc. Lond. A 371, 20120248.Google Scholar
Raoult, M. & Pellat, R. 1978 The stability of a self-gravitating magnetized system. Astrophys. J. 226, 11091114.Google Scholar
Safronov, V. S. 1960 On the gravitational instability in flattened systems with axial symmetry and non-uniform rotation. Ann. Astrophys. 23, 979982.Google Scholar
Sánchez Almeida, J., Elmegreen, B. G., Muñoz-Tuñón, C. & Elmegreen, D. M. 2014 Star formation sustained by gas accretion. Astron. Astrophys. Rev. 22 (1), 71.Google Scholar
Schneider, S. & Elmegreen, B. G. 1979 A catalog of dark globular filaments. Astrophys. J. Suppl. 41, 8795.Google Scholar
Simon, R. 1965a Gravitational instability in a plane gaseous medium in non-uniform rotation. Ann. Astrophys. 28, 625.Google Scholar
Simon, R. 1965b Gravitational instability in the isothermal stratified nebula. Ann. Astrophys. 28, 4045.Google Scholar
Spaans, M. & Silk, J. 2000 The polytropic equation of state of interstellar gas clouds. Astrophys. J. 538 (1), 115120.Google Scholar
Springel, V. 2010 E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh. Mon. Not. R. Astron. Soc. 401, 791851.Google Scholar
Strittmatter, P. A. 1966 Gravitational collapse in the presence of a magnetic field. Mon. Not. R. Astron. Soc. 132 (2), 359378.Google Scholar
Tassoul, J. L. 1967 On the stability of a self-gravitating fluid layer. Mon. Not. R. Astron. Soc. 137, 113.Google Scholar
Thompson, M. J. 2006 An Introduction to Astrophysical Fluid Dynamics. Imperial College Press.Google Scholar
Toci, C. & Galli, D. 2015 Polytropic models of filamentary interstellar clouds. Part I. Structure and stability. Mon. Not. R. Astron. Soc. 446, 21102117.Google Scholar
Tomisaka, K. & Ikeuchi, S. 1983 Gravitational instability of isothermal gas layers: effect of curvature and magnetic field. Publ. Astronom. Soc. Japan 35, 187208.Google Scholar
Tomisaka, K. & Ikeuchi, S. 1985 Gravitational instability of neutrino-dominated pancakes and galaxy formation. Publ. Astronom. Soc. Japan 37, 461480.Google Scholar
Umemura, M. 1993 Three-dimensional hydrodynamical calculations on the fragmentation of pancakes and galaxy formation. Astrophys. J. 406, 361382.Google Scholar
Van Loo, S., Keto, E. & Zhang, Q. 2014 Core and filament formation in magnetized, self-gravitating isothermal layers. Astrophys. J. 789, 3749.Google Scholar
Wünsch, R., Dale, J. E., Palouš, J. & Whitworth, A. P. 2010 The fragmentation of expanding shells. Part II. Thickness matters. Mon. Not. R. Astron. Soc. 407, 19631971.Google Scholar