Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-19T12:21:21.942Z Has data issue: false hasContentIssue false

Analysis of cavitating flow structure by experimental and numerical investigations

Published online by Cambridge University Press:  26 April 2007

O. COUTIER-DELGOSHA*
Affiliation:
ENSTA – UER de Mécanique, Chemin de la Huniére, 91761 Palaiseau Cedex, France
B. STUTZ
Affiliation:
CETHYL, 20 Avenue Albert Einstein, 69621 Villeurbanne-cedex, France
A. VABRE
Affiliation:
Commissariat à l'Energie Atomique (CEA), CEA-Saclay, DRT/LIST, 91191 Gif sur Yvette, France
S. LEGOUPIL
Affiliation:
Commissariat à l'Energie Atomique (CEA), CEA-Saclay, DRT/LIST, 91191 Gif sur Yvette, France

Abstract

The unsteady structure of cavitating flows is investigated by coupled experimental and numerical means. Experiments focus on the structure and dynamics of sheet cavitation on the upper side of a two-dimensional foil section in the ENSTA cavitation tunnel. Various flow conditions are investigated by varying the pressure, the flow velocity, and the incidence of the foil section. High-frequency local measurements of volume fractions of the vapour phase are performed inside the liquid/vapour mixture by a X-ray absorption method. The numerical approach is based on a macroscopic formulation of the balance equations for a two-phase flow. The assumptions required by this formulation are detailed and they are shown to be common to almost all the models used to simulate cavitating flows. In the present case we apply a single-fluid model associated with a barotropic state law that governs the mixture density evolution. Numerical simulations are performed at the experimental conditions and the results are compared to the experimental data. A reliable agreement is obtained for the internal structure of the cavity for incidence varying between 3° and 6°. Special attention is paid to the mechanisms of partial and transitional instabilities, and to the effects of the interaction between the two sides of the foil section.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFRENCES

Acosta, A. J. 1955 A note on partial cavitation of flat plate hydrofoils. California Institute of Technology, Rep. E-19.9.Google Scholar
Arndt, R. E. A., Song, C. C. S, Kjeldsen, M. He, J. & Keller, A. 2000 Instability of partial cavitation: a numerical/experimental approach. Proc. 23rd Symp. on Naval Hydrodynamics, Office of Naval Research, Val de Reuil, France, National Academic Press, Washington, DC, pp. 599615.Google Scholar
Avva, R. K., Singhai, A. K. & Gibson, D. H. 1995 An enthalpy based model of cavitation. Cavitation and Gas-Liquid Flow in Fluid Machinery Devices. ASME-FED Vol. 226, pp. 63–70.Google Scholar
deBernardi, J. Bernardi, J. Joussellin, F. & VonKaenel, A. Kaenel, A. 1993 Experimental analysis of instabilities related to cavitation in turbopump inducer. Proc. 1st Intl Symp. on Pump Noise and Vibrations, pp. 91–99.Google Scholar
Callenaere, M., Franc, J.-P., Michel, J.-M. & Riondet, M. 2001 The cavitation instability induced by the development of a re-entrant jet. J. Fluid Mech. 444, 223256.CrossRefGoogle Scholar
Caupin, F. 2005 Liquid-vapour interface, cavitation, and the phase diagram of water. Phys. Rev. E 71, 051605 (15).Google Scholar
Ceccio, S. L. & Brennen, C. E. 1992 Dynamics of attached cavities on bodies of revolution. Trans. ASME: J. Fluids Engng 114, 9399.Google Scholar
Charles, N. 1994 Modélisation d'écoulements cavitants avec effets thermodynamiques. PhD thesis, Institut National Polytechnique de Grenoble, France.Google Scholar
Chen, Y. & Heister, S. D. 1994 A numerical treatment for attached cavitation. Trans. ASME: J. Fluids Engng 116, 613618.Google Scholar
Chen, Y. & Heister, S. D. 1995 Modeling hydrodynamic non-equilibrium in bubbly and cavitating flows. Trans. ASME: J. Fluids Engng 118, 172178.Google Scholar
Coutier-Delgosha, O. Fortes-Patella, R. & Reboud, J.-L. 2002 Simulation of unsteady cavitation with a two-equations turbulence model including compressibility effects. J. Turbulence 3, 058, http:\\jot.iop.org.CrossRefGoogle Scholar
Coutier-Delgosha, O. Reboud, J.-L. & Delannoy, Y. 2003 Numerical simulations in unsteady cavitating flows. Intl J. Numer. Meth. Fluids 42 (5), 527548.CrossRefGoogle Scholar
Coutier-Delgosha, O. Fortes-Patella, R. & Reboud, J.-L. 2003 b Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation. Trans. ASME: J. Fluids Engng 125, 3845.Google Scholar
Coutier-Delgosha, O. Courtot, Y. Joussellin, F. & Reboud, J.-L. 2004 Numerical simulation of the unsteady cavitation behavior of an inducer blade cascade. AIAA J. 42 (3), 560569.CrossRefGoogle Scholar
Coutier-Delgosha, O. Devillers, J.-F., Pichon, T. & Leriche, M. 2005 Effect of the wall roughness on unsteady sheet cavitation. Trans. ASME: J. Fluids Engng 127 (4), 726733.Google Scholar
Coutier-Delgosha, O. Devillers, J.-F. Pichon, T. Vabre, A. Woo, R. & Legoupil, S. 2006 Internal structure and dynamics of sheet cavitation. Phys. Fluids 18 (1), 017103.Google Scholar
Dang, J. & Kuiper, G. 1998 Re-entrant jet modelling of partial cavity flow on two dimensional hydrofoils. Trans. ASME: J. Fluids Engng 121, 781787.Google Scholar
Delannoy, Y. 1989 Modélisation d'écoulements instationnaires et cavitants. PhD Thesis, Institut National Polytechnique de Grenoble, France.Google Scholar
Delannoy, Y. & Kueny, J.-L. 1990 Two-phase flow approach in unsteady cavitation modelling. Cavitation and Multiphase Flow Forum. ASME-FED Vol. 98, pp. 153158.Google Scholar
Dieval, L., Arnaud, M. & Marcer, R. 1998 Numerical modelling of unsteady cavitating flows by a VOF method. Proc. 3rd Intl Symp. on Cavitation (ed. Michel, J.-M. & Kato, H.), Vol. 2, pp. 243248.Google Scholar
Drew, D. A. 1983 Mathematical modeling of two-phase flows. Annu. Rev. Fluid Mech. 15, 261291.CrossRefGoogle Scholar
Furness, R. A. & Hutton, S. P. 1975 Experimental and theoretical studies of two-dimensional fixed-type cavities. Trans. ASME: J. Fluids Engng 97, 515522.Google Scholar
Gopalan, S. & Katz, J. 2000 Flow structure and modeling issues in the closure region of attached cavitation. Phys. Fluids 12, 895911.CrossRefGoogle Scholar
Grogger, H. A. & Alajbegovic, A. 1998 Calculation of the cavitating flow in Venturi geometries using two fluid model. ASME Paper, FEDSM99-7364.Google Scholar
Hirschi, R. & Dupont, P. 1998 Partial sheet cavities prediction on a twisted elliptical planform hydrofoil using a fully 3D approach. Proc. 3rd Intl Symp. on Cavitation (ed. Michel, J.-M. & Kato, H.), Vol. 1, pp. 245249.Google Scholar
Ishii, M. 1975 Thermo-fluid Dynamic Theory of Two Phase Flow. Eyrolles, Paris/Scientific and Medical Publications of France, New York.Google Scholar
Jakobsen, J. K. 1964 On the mechanism of head breakdown in cavitating inducers. Trans. ASME: J. Basic Engng, pp. 291–305.Google Scholar
Joussellin, F., Delannoy, Y., Sauvage-Boutar, E. & Goirand, B. 1991 Experimental investigation on unsteady attached cavities. Cavitation'91, ASME 1991, Vol. 116, pp. 6166.Google Scholar
Kai, H. & Ikehata, M. 1998 Numerical simulation of cavitation on 3D wings and marine propeller by a surface vortex Lattice method. Proc. 3rd Intl Symp. on Cavitation (ed. Michel, J.-M. & Kato, H.), Vol. 2, pp. 281286.Google Scholar
Kamijo, K., Shimura, T. & Watanabe, M. 1977 An experimental investigation of cavitating inducer instability. ASME Paper 77-WA/FW-14.Google Scholar
Kjeldsen, M., Arndt, R. E. A. & Efferts, M. 2000 Spectral characteristics of sheet/cloud cavitation. Trans. ASME: J. Fluids Engng 122, 481487.Google Scholar
Knapp, R. T., Daily, J. T. & Hammit, F. G. 1970 Cavitation. McGraw Hill.Google Scholar
Kubota, A., Kato, H. & Yamaguchi, H. 1992 A new modelling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section, J. Fluid Mech. 240, 5996.Google Scholar
Kunz, R. F., Boger, D. A., Stinebring, D. R., Chyczewski, T. S. Lindau, J. W. Gibeling, H. J. Venkateswaran, S. & Govindan, T. R. 2000 A preconditioned implicit method for two-phase flows with application to cavitation prediction. Computers Fluids 29 8, 849875.Google Scholar
Laberteaux, K. R. & Ceccio, S. L. 2001 Partial cavity flows. Part 1. Cavities forming on models without spanwise variation. J. Fluid Mech. 431, 141.CrossRefGoogle Scholar
Laporta, A. porta, A. Voth, G. A. Moisy, F. & Bodenschatz, E. 2000 Using cavitation to measure statistics of low pressure events in large-Reynolds-number turbulence. Phys. Fluids 12 6, 14851496.Google Scholar
Le, Q., Franc, J.-P. & Michel, J.-M. 1993 Partial cavities: global behaviour and mean pressure distribution. J. Fluids Engng 115, 243248.CrossRefGoogle Scholar
Leroux, J.-B., Coutier-Delgosha, O. & Astolfi, J.-A. 2005 A joint experimental and numerical analysis of mechanisms associated to unsteady partial cavitation. Phys. Fluids 17 5, 052101.CrossRefGoogle Scholar
Lush, P. A, & Peters, P. I. 1982 Visualisation of the cavitating flow in a venturi type duct using high-speed cine photography. Proc. IAHR Conf. on Operating Problems of Pump Stations and Power Plants, Vol. 5, pp. 113.Google Scholar
Matsumoto, Y. 1998 Bubble dynamics in cavitation. Proc. 3rd Intl Symp. on Cavitation (ed. Michel, J.-M. & Kato, H.), Vol. 1, pp. 38.Google Scholar
Merkle, C. L., Feng, J. & Buelow, P. E.O. 1998 Computational modelling of the dynamics of sheet cavitation. Proc. 3rd Intl Symp. on Cavitation (ed. Michel, J.-M. & Kato, H.), Vol. 2, pp. 307314.Google Scholar
Orszag, S. A. 1993 Renormalization Group Modelling and Turbulence Simulations, Near Wall Turbulent flows. Elsevier.Google Scholar
Patankar, S. V. 1981 Numerical Heat Transfer and Fluid Flow. Hemisphere.Google Scholar
Pham, T. M., Larrarte, F. & Fruman, D. H. 1999 Investigation of unsteady sheet cavitation and cloud cavitation mechanisms. J. Fluids Engng 121, 289296.CrossRefGoogle Scholar
Preston, A. T. 2003 Modeling heat and mass transfer in bubbly cavitating flows and shock waves in cavitating nozzles. PhD Dissertation, California Institute of Technology.Google Scholar
Reboud, J.-L. & Stutz, B. 1995 Analyse de l'écoulement dans les poches de cavitation: modèle diphasique liquide-vapeur à deux fluides. Final Report 95/CNES/3171.Google Scholar
Reboud, J. L., Stutz, B. & Coutier, O. 1998 Two phase flow structure of cavitation: experiment and modeling of unsteady effects. Proc. 3rd Intl Symp. on Cavitation (ed. Michel, J.-M. & Kato, H.), Vol. 2, pp. 203208.Google Scholar
Sauer, J. & Schnerr, G. H. 2000 Unsteady cavitating flow – A new cavitation model based on modified front capturing method and bubble dynamics. Proc. Fluids Engineering Summer Conference. FEDSM2000/11095.Google Scholar
Senocak, I. & Shyy, W. 2004 a Interfacial dynamics-based modelling of turbulent cavitating flows, Part-1: Model development and steady-state computations. Intl J. Numer. Meth. Fluids 44 9, 975995.CrossRefGoogle Scholar
Senocak, I. & Shyy, W. 2004 b Interfacial dynamics-based modelling of turbulent cavitating flows, Part-2: Time-dependent computations. Intl J. Numer. Meth. Fluids 44 9, 9971016.CrossRefGoogle Scholar
Shin, B. R. & Ikohagi, T. 1998 A numerical study of unsteady cavitating flows. Proc. 3rd Intl Symp. on Cavitation (ed. Michel, J.-M. & Kato, H.), Vol. 2, pp. 301306.Google Scholar
Singhal, A. K., Athavale, M. M., Li, H.-Y. & Jiang, Y. 2002 Mathematical basis and validation of the full cavitation model. J. Fluids Engng 124 3, 617624.Google Scholar
Song, C. C. S. & He, J. 1998 Numerical simulation of cavitating flows by single-phase flow approach. Proc. 3rd Intl Symp. on Cavitation (ed. Michel, J.-M. & Kato, H.), Vol. 2, pp. 295300.Google Scholar
Stutz, B. & Legoupil, S. 2003 X-ray Measurements within unsteady cavitation. Exps. Fluids 35 2, 130138.Google Scholar
Stutz, B. & Reboud, J.-L. 1997 a Experiments on unsteady cavitation. Exps. Fluids 22, 191198.CrossRefGoogle Scholar
Stutz, B. & Reboud, J.-L. 1997 b Two-phase flow structure of sheet cavitation. Phys. Fluids 9 12, 36783686.CrossRefGoogle Scholar
Stutz, B. & Reboud, J.-L. 2000 Measurements within unsteady cavitation. Exps. Fluids 29, 545552.CrossRefGoogle Scholar
ThaiVan, D. Van, D., Minier, J. P. Simonin, O. Freydier, P. & Olive, J. 1994 Multidimensional two-fluid model computation of turbulent dispersed two-phase flows. Numerical Methods in Multiphase Flows. ASME-FED Vol. 185, pp. 277291.Google Scholar
Tsujimoto, Y., Kamijo, K. & Yoshida, Y. 1993 A theoretical analysis of rotating cavitation inducers''. J. Fluids Engng 115, 135141.Google Scholar
Ventikos, Y. & Tzabiras, G. 1995 A numerical study of steady and unsteady cavitation phenomenon around hydrofoils. Proc. CAV'95 Intl Symp. on Cavitation, pp. 441448.Google Scholar
Watanabe, S., Tsujimoto, Y. & Furukawa, A. 2001 Theoretical analysis of transitional and partial cavity instabilities. J. Fluids Engng 123, 692697.Google Scholar
Wei, Y. S. & Sadus, R. J. 2000 Equations of state for the calculation of fluid-phase equilibria. AIChE J. 46 1, 169196.CrossRefGoogle Scholar
Wilcox, D. 1998 Turbulence Modeling for CFD. DCW Industries, Inc., La Canada, California, USA.Google Scholar
Wu, J., Wang, G. & Shyy, W. 2005 Time-dependent turbulent cavitating flow computations with interfacial transport and filter based models. Intl J. Numer. Meth. Fluids 49 7, 739761.Google Scholar
Yu, P.-W., Ceccio, S. & Tryggvason, G. 1995 The collapse of a cavitation bubble in shear flows – A numerical study. Phys. Fluids 7 11, 26082616.CrossRefGoogle Scholar
Yuan, W. & Schnerr, G. H. 2003 Numerical simulation of two-phase flow in injection nozzles: interaction of cavitation and external jet formation. J. Fluids Engng 125, 963969.Google Scholar
Zhu, J. 1991 A low diffusive and oscillation-free convection scheme. Commun. Appl. Numer. Meth. 7, 225232.CrossRefGoogle Scholar