Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-18T23:06:52.821Z Has data issue: false hasContentIssue false

An inviscid model for the vortex-street wake

Published online by Cambridge University Press:  20 April 2006

P. G. Saffman
Affiliation:
Applied Mathematics, California Institute of Technology, Pasadena, California 91125
J. C. Schatzman
Affiliation:
Applied Mathematics, California Institute of Technology, Pasadena, California 91125

Abstract

An inviscid model for the Karman vortex street, containing vortices of uniform vorticity surrounded by irrotational fluid, is related to the wake behind a bluff body by a global analysis requiring the conservation of momentum, energy and vorticity. Some comparison is made with experimental results reported in the literature. A qualitative procedure is proposed whereby the slow evolution of the wake through viscous effects is approximated. Some comments are made regarding the relevance of the stability properties of the inviscid street. Some calculations are made for the ‘secondary vortex street’ that is observed after breakdown and rearrangement, and comparison is made with experiment.

Type
Research Article
Copyright
© 1982 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berger, E. 1964 Die Bestimmung der hydrodynamischen Grössen einen Karmanshen Wirbelstrasse aus Hitzdrahtmessungen bei kleinen Reynoldschen Zahlen. Z. Flugwiss. 12, 4159.Google Scholar
Birkhoff, G. 1953 Formation of vortex streets. J. Appl. Phys. 24, 98103.Google Scholar
Bloor, M. S. & Gerrard, J. H. 1966 Measurements of turbulent vortices in a cylinder wake. Proc. R. Soc. Lond. A 294, 319342.Google Scholar
Clements, R. R. 1973 An inviscid model of two-dimensional vortex shedding. J. Fluid Mech. 57, 321336.Google Scholar
Davies, M. E. 1976 A comparison of the wake structure of a stationary and oscillating bluff body, using a conditional averaging technique. J. Fluid Mech. 75, 209231.Google Scholar
Fage, A. & Johansen, F. C. 1927 The flow of air behind an inclined flat plate of infinite span. Aero. Res. Counc. R & M, no. 1104, 81–106.
Gerrard, J. H. 1965 A disturbance-sensitive Reynolds number range of the flow past a circular cylinder. J. Fluid Mech. 22, 187196.Google Scholar
Goldstein, S. (ed.) 1938 Modern Developments in Fluid Dynamics, vol. II, pp. 556565. Clarendon.
Hooker, S. G. 1936 On the action of viscosity in increasing the spacing ratio of a vortex street. Proc. R. Soc. Lond. A 154, 6789.Google Scholar
Kármán, T. V. 1911 Über den Mechanismus des Widerstands, den ein bewegter Korper in einer Flüssigkeit erfährt. Göttinger Nachrichten, Math. Phys. Kl., pp. 509–517.Google Scholar
Kármán, T. V. 1912 Über den Mechanismus des Widerstands, den ein bewegter Korper in einer Flüssigkeit erfahrt. Göttinger Nachrichten, Math. Phys. Kl., pp. 547–556.
Karman, T. V. & Rubach, H. L. 1912 Über den Mechanismus des Flüssigkeits- und Luftwiderstands. Phys. Z. 13, 4959.Google Scholar
Kaufmann, W. 1951 Über den Mechanismus der Wirbelkerne einer Kármánschen Wirbelstraße. Ing. Arch. 19, 192199.Google Scholar
Matsui, T. & Okude, M. 1980 Rearrangement of Kármán vortex street at low Reynolds numbers. In Proc. XVth Int. Cong. Theor. Appl. Mech., University of Toronto, August 17–23, 1980, pp. 1–27.
Roshko, A. 1953 On the development of turbulent wakes from vortex streets. NACA Tech. Note no. 2913, pp. 1–77.
Roshko, A. 1954 On the drag and shedding frequency of two-dimensional bluff bodies. NACA Tech. Note no. 3169, pp. 1–29.
Roshko, A. 1961 Experiments on the flow past a circular cylinder at very high Reynolds number. J. Fluid Mech. 10, 345356.Google Scholar
Saffman, P. G. & Schatzman, J. C. 1981 Properties of a vortex street of finite vortices. SIAM J. Sci. Stat. Comp. 2, 285295.Google Scholar
Saffman, P. G. & Schatzman, J. C. 1982 Stability of the Kármán vortex street. J. Fluid Mech. 117, 171185.Google Scholar
Sarpkaya, T. 1975 An inviscid model of two-dimensional vortex shedding for transient and asymptotically steady separated flow over an inclined plate. J. Fluid Mech. 68, 109128.Google Scholar
Schaefer, J. & Eskinaze, S. 1959 An analysis of the vortex street generated in a viscous fluid. J. Fluid Mech. 75, 241260.Google Scholar
Schatzman, J. C. 1981 A model for the von Kármán vortex street. Ph.D. thesis, California Institute of Technology.
Schlayer, K. 1928 Über die Stabilität der Kármánschen Wirbelstraße gegenüber beliegigen Storungen in drei Dimensionen. Z. angew. Math. Mech. 8, 352372.Google Scholar
Taneda, S. 1959 Downstream development of the wakes behind cylinders. J. Phys. Soc. Japan 14, 843848.Google Scholar
Timme, A. 1957 Über die Geschwindigkeitsverteilung in Wirbelen. Ing. Arch. 25, 205225.Google Scholar
Tritton, D. J. 1959 Experiments on the flow past a circular cylinder at low Reynolds number. J. Fluid Mech. 6, 547567.Google Scholar
Weihs, D. 1973 On the existence of multiple Kármán vortex-street modes. J. Fluid Mech. 61, 199205.Google Scholar