Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-21T15:09:48.105Z Has data issue: false hasContentIssue false

An experimental study of boundary layer transition induced by a cylinder wake

Published online by Cambridge University Press:  01 September 2011

A. C. Mandal*
Affiliation:
Department of Aerospace Engineering, Indian Institute of Science, Bangalore-560012, India
J. Dey
Affiliation:
Department of Aerospace Engineering, Indian Institute of Science, Bangalore-560012, India
*
Email address for correspondence: [email protected]

Abstract

Boundary layer transition induced by the wake of a circular cylinder in the free stream has been investigated using the particle image velocimetry technique. Some differences between simulation and experimental studies have been reported in the literature, and these have motivated the present study. The appearance of spanwise vortices in the early stage is further confirmed here. A spanwise vortex appears to evolve into a /hairpin vortex; the flow statistics also confirm such vortices. With increasing Reynolds number, based on the cylinder diameter, and with decreasing cylinder height from the plate, the physical size of these hairpin-like structures is found to decrease. Some mean flow characteristics, including the streamwise growth of the disturbance energy, in a wake-induced transition resemble those in bypass transition induced by free stream turbulence. Streamwise velocity streaks that are eventually generated in the late stage often undergo sinuous-type oscillations. Similar to other transitional flows, an inclined shear layer in the wall-normal plane is often seen to oscillate and shed vortices. The normalized shedding frequency of these vortices, estimated from the spatial spacing and the convection velocity of these vortices, is found to be independent of the Reynolds number, similar to that in ribbon-induced transition. Although the nature of free stream disturbance in a wake-induced transition and that in a bypass transition are different, the late-stage features including the flow breakdown characteristics of these two transitions appear to be similar.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Acarlar, M. S. & Smith, C. R. 1987 A study of hairpin vortices in a laminar boundary layer. Part 1. Hairpin vortices generated by a hemisphere protuberance. J. Fluid Mech. 175, 141.CrossRefGoogle Scholar
2. Adrian, R. J. 2007 Conditional averages and stochastic estimation. In Handbook of Experimental Fluid Mechanics (ed. Yarin, A. L., Tropea, C. & Foss, J. F. ), pp. 13701378. Springer.Google Scholar
3. Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.CrossRefGoogle Scholar
4. Andersson, P., Brandt, L., Bottaro, A. & Henningson, D. 2001 On the breakdown of boundary layer streaks. J. Fluid Mech. 428, 2960.CrossRefGoogle Scholar
5. Angrill, F., Bergamaschi, S. & Cossalter, V. 1982 Investigation of wall induced modifications to vortex shedding from a circular cylinder. Trans. ASME: J. Fluids Engng 104, 518522.Google Scholar
6. Bake, S., Fernholz, H. H. & Kachanov, Y. S. 2000 Resemblance of k- and n-regimes of boundary-layer transition at late stages. Eur. J. Mech. B/Fluids 19, 122.CrossRefGoogle Scholar
7. Banerjee, A. S., Mandal, A. C. & Dey, J. 2006 Particle image velocimetry studies of an incipient spot in the Blasius boundary layer. Exp. Fluids 40, 928941.CrossRefGoogle Scholar
8. Brandt, L. & Henningson, D. S. 2002 Transition of streamwise streaks in zero-pressure-gradient boundary layers. J. Fluid Mech. 472, 229261.CrossRefGoogle Scholar
9. Brandt, L., Schlatter, P. & Henningson, D. S. 2004 Transition in boundary layers subject to free-stream turbulence. J. Fluid Mech. 517, 167198.CrossRefGoogle Scholar
10. Christensen, K. T. & Adrian, R. J. 2001 Statistical evidence of hairpin vortex packets in wall turbulence. J. Fluid Mech. 431, 433443.CrossRefGoogle Scholar
11. Doligalski, T. L., Smith, C. R. & Walker, J. D. A. 1994 Vortex interactions with walls. Annu. Rev. Fluid Mech. 26, 573616.CrossRefGoogle Scholar
12. Doligalski, T. L. & Walker, J. D. A. 1984 The boundary layer induced by a convected two-dimensional vortex. J. Fluid Mech. 139, 128.CrossRefGoogle Scholar
13. Durbin, P. A., Liu, Y. & Zaki, T. A. 2009 Interaction of discrete and continuous boundary layer modes to cause transition. Intl J. Heat Fluid Flow 30, 403410.CrossRefGoogle Scholar
14. Elofsson, P. A. & Alfredsson, P. H. 1998 An experimental study of oblique transition in plane Poiseuille flow. J. Fluid Mech. 358, 177202.CrossRefGoogle Scholar
15. Elofsson, P. A., Kawakami, M. & Alfredsson, P. H. 1999 Experiments on the stability of streamwise streaks in plane Poiseuille flow. Phys. Fluids 11, 915930.CrossRefGoogle Scholar
16. Fransson, J. H. M., Matsubara, M. & Alfredsson, P. H. 2005 Transition induced by freestream turbulence. J. Fluid Mech. 527, 125.CrossRefGoogle Scholar
17. Gad-el-Hak, M., Davis, S. H., McMurray, J. T. & Orszag, S. A. 1984 On the stability of the decelerating laminar boundary layer. J. Fluid Mech. 138, 297323.CrossRefGoogle Scholar
18. Gavarini, M. I., Bottaro, A. & Nieuwstad, F. T. M. 2004 The initial stage of transition in pipe flow: role of optimal base-flow distortions. J. Fluid Mech. 517, 131165.CrossRefGoogle Scholar
19. Jacobs, R. G. & Durbin, P. A. 2001 Simulations of bypass transition. J. Fluid Mech. 428, 185212.CrossRefGoogle Scholar
20. Kachanov, Y. S. 1994 Physical mechanism of laminar-boundary-layer transition. Annu. Rev. Fluid Mech. 26, 411482.CrossRefGoogle Scholar
21. Klebanoff, P. S., Tidstrom, K. D. & Sargent, L. M. 1962 The three dimensional nature of boundary-layer instability. J. Fluid Mech. 12, 134.CrossRefGoogle Scholar
22. Konishi, Y. & Asai, M. 2010 Development of subharmonic disturbance in spanwise-periodic low-speed streaks. Fluid Dyn. Res. 42, 035504.CrossRefGoogle Scholar
23. Kostas, J., Soria, J. & Chong, M. S. 2002 Particle image velocimetry measurements of a backward-facing step flow. Exp. Fluids 33, 838853.CrossRefGoogle Scholar
24. Kyriakides, N. K., Kastrinakis, E. G., Nychas, S. G. & Goulas, A. 1996 Boundary layer transition induced by a von Karman vortex street wake. Proc. Inst. Mech. Engrs 12, 167179.CrossRefGoogle Scholar
25. Kyriakides, N. K., Kastrinakis, E. G., Nychas, S. G. & Goulas, A. 1999 Aspects of flow structure during a cylinder wake-induced laminar/turbulent transition. AIAA J. 37, 11971205.CrossRefGoogle Scholar
26. Lee, C. B. & Wu, J. Z. 2008 Transition in wall-bounded flows. Appl. Mech. Rev. 61, 030802.CrossRefGoogle Scholar
27. Liu, X. & Rodi, W. 1991 Experiments on transitional boundary layers with wake-induced unsteadiness. J. Fluid Mech. 231, 229256.CrossRefGoogle Scholar
28. Liu, Y., Zaki, T. A. & Durbin, P. A. 2008 Boundary-layer transition by interaction of discrete and continuous modes. J. Fluid Mech. 604, 199233.CrossRefGoogle Scholar
29. Lourenco, L. M. & Krothapalli, A. 2000TRUE resolution PIV: a mesh-free second order accurate algorithm. In Proceedings of the International Conference in Applications of Lasers to Fluid Mechanics, Lisbon, Portugal.Google Scholar
30. Luchini, P. 2000 Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations. J. Fluid Mech. 404, 289309.CrossRefGoogle Scholar
31. Mandal, A. C. 2010 A study on boundary layer transition induced by large freestream disturbances. PhD thesis, Indian Institute of Science, Bangalore, India.Google Scholar
32. Mandal, A. C., Venkatakrishnan, L. & Dey, J. 2010 A study on boundary layer transition induced by freestream turbulence. J. Fluid Mech. 660, 114146.CrossRefGoogle Scholar
33. Mans, J., Kadijk, E. C., de Lange, H. C. & van Steenhoven, A. A. 2005 Breakdown in a boundary layer exposed to free-stream turbulence. Exp. Fluids 39, 10711083.CrossRefGoogle Scholar
34. Mans, J., de Lange, H. C. & van Steenhoven, A. A. 2007 Sinuous breakdown in a flat plate boundary layer exposed to free-stream turbulence. Phys. Fluids 19, 088101.CrossRefGoogle Scholar
35. Matsubara, M. & Alfredsson, P. H. 2001 Disturbance growth in boundary layers subjected to free-stream turbulence. J. Fluid Mech. 430, 149169.CrossRefGoogle Scholar
36. Mayle, R. E. 1991 The role of laminar–turbulent transition in gas turbine engines. Trans. ASME: J. Turbomach. 113, 509537.Google Scholar
37. Morkovin, M. V. 1969 The many faces of transition. In Viscous Drag Reduction (ed. Wells, C. S. ). Plenum.Google Scholar
38. Narasimha, R., Devasia, K. J., Gururani, G. & Badri Narayanan, M. A. 1984 Transitional intermittency in boundary layers subjected to pressure gradient. Exp. Fluids 2, 171176.CrossRefGoogle Scholar
39. Narasimha, R. & Prasad, S. N. 1994 Leading edge shape for flat plate boundary layer studies. Exp. Fluids 17, 358360.CrossRefGoogle Scholar
40. Nishioka, M., Asai, M. & Iida, S. 1981 Wall phenomena in the final stage of transition to turbulence. In Transition and Turbulence (ed. Meyer, R. E. ), pp. 113126. Academic.CrossRefGoogle Scholar
41. Ong, L. & Wallace, J. 1996 The velocity field of the turbulent very near wake of a circular cylinder. Exp. Fluids 20, 441453.CrossRefGoogle Scholar
42. Ovchinnikov, V., Choudhari, M. M. & Piomelli, U. 2008 Numerical simulations of boundary-layer bypass transition due to high-amplitude free-stream turbulence. J. Fluid Mech. 613, 135169.CrossRefGoogle Scholar
43. Ovchinnikov, V., Piomelli, U. & Choudhari, M. M. 2006 Numerical simulations of boundary-layer transition induced by a cylinder wake. J. Fluid Mech. 547, 413441.CrossRefGoogle Scholar
44. Pan, C., Wang, J. J., Zhang, P. F. & Feng, L. H. 2008 Coherent structures in bypass transition induced by a cylinder wake. J. Fluid Mech. 603, 367389.CrossRefGoogle Scholar
45. Pellerin, S. & Giovannini, A. 1999 Interaction vortex – boundary layer: numerical study of wall mechanisms. ESAIM: Proc. 7, 325334.CrossRefGoogle Scholar
46. Perret, L. 2009 PIV investigation of the shear layer vortices in the near wake of a circular cylinder. Exp. Fluids 47, 789800.CrossRefGoogle Scholar
47. Price, S. J., Sumner, D., Smith, J. G., Leong, K. & Paigdoussis, M. P. 2002 Flow visualization around a circular cylinder near to a plane wall. J. Fluids Struct. 16, 175191.CrossRefGoogle Scholar
48. Reuter, J. & Rempfer, D. 2004 Analysis of pipe flow transition. Part I. Direct numerical simulation. Theor. Comput. Fluid Dyn. 17, 273292.CrossRefGoogle Scholar
49. Rist, U. & Fasel, H. 1995 Direct numerical simulation of controlled transition in a flat-plate boundary layer. J. Fluid Mech. 298, 211248.CrossRefGoogle Scholar
50. Sarkar, S. & Sarkar, S. 2009 Large-eddy simulation of wake and boundary layer interactions behind a circular cylinder. Trans. ASME: J. Fluids Engng 131, 091201.Google Scholar
51. Savill, A. & Zhou, M. 1983 Wake/boundary layer and wake/wake interactions–smoke flow visualization and modeling. In Proc. 2nd Asian Congress of Fluid Mechanics (ed. Ko, M. C. ), pp. 743754. Science Press.Google Scholar
52. Schlatter, P., Brandt, L., de Lange, H. C. & Henningson, D. S. 2008 On streak breakdown in bypass transition. Phys. Fluids 20, 101505.CrossRefGoogle Scholar
53. Schröder, A. 2001Untersuchung der Strukturen von künstlich angeregten transitionellen Plattengrenzschichtströmungen mit Hilfe der Stereo und Multiplane Particle Image Velocimetry. PhD thesis, University of Göttingen, Germany. http://webdoc.sub.gwdg.de/diss/2001/schroeder/schroeder.pdf.Google Scholar
54. Singer, B. A. 1996 Characteristics of a young turbulent spot. Phys. Fluids 8, 509521.CrossRefGoogle Scholar
55. Squire, L. C. 1989 Interactions between wakes and boundary layers. Prog. Aerosp. Sci. 26, 261288.CrossRefGoogle Scholar
56. Svizher, A. & Cohen, J. 2006 Holographic particle image velocimetry measurements of hairpin vortices in subcritical air channel flow. Phys. Fluids 18, 014105.CrossRefGoogle Scholar
57. Swearingen, J. D. & Blackwelder, R. F. 1987 The growth and breakdown of streamwise vortices in the presence of a wall. J. Fluid Mech. 182, 255290.CrossRefGoogle Scholar
58. Tomkins, C. D. & Adrian, R. J. 2003 Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 3774.CrossRefGoogle Scholar
59. Westin, K. J. A., Boiko, A. V., Klingmann, B. G. G., Kozlov, V. V. & Alfredsson, P. H. 1994 Experiments in a boundary layer subjected to free stream turbulence. Part 1. Boundary layer structure and receptivity. J. Fluid Mech. 281, 193218.CrossRefGoogle Scholar
60. Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanism for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.CrossRefGoogle Scholar
61. Zhou, M. D. & Squire, L. C. 1985 The interaction of a wake with a turbulent boundary-layer. J. Aeronaut. 89, 7281.CrossRefGoogle Scholar