Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T17:14:54.818Z Has data issue: false hasContentIssue false

Acoustic invisibility in turbulent fluids by optimised cloaking

Published online by Cambridge University Press:  16 May 2014

Xun Huang*
Affiliation:
State Key Laboratory of Turbulence and Complex Systems, Aeronautics and Astronautics, College of Engineering, Peking University, Beijing, 100871, China
Siyang Zhong
Affiliation:
State Key Laboratory of Turbulence and Complex Systems, Aeronautics and Astronautics, College of Engineering, Peking University, Beijing, 100871, China
Xin Liu
Affiliation:
State Key Laboratory of Turbulence and Complex Systems, Aeronautics and Astronautics, College of Engineering, Peking University, Beijing, 100871, China
*
Email address for correspondence: [email protected]

Abstract

Acoustic invisibility of a cloaking system in turbulent fluids is poorly understood. Here we show that evident scattering would appear in turbulent wakes due to the submergence of a classical cloaking device. The inherent physical mechanism is explained using our theoretical model, which eventually inspires us to develop an optimised cloaking approach. Both the near- and far-field scattered fields are examined using computational methods. The remarkably low scattering demonstrates the effectiveness of the proposed approach, in particular for acoustic cloaking in turbulent fluids.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashcroft, G. & Zhang, X. 2003 Optimised prefactored compact schemes. J. Comput. Phys. 190 (2), 459477.CrossRefGoogle Scholar
Bai, L. & Huang, X. 2011 Observer-based beamforming algorithm for acoustic array signal processing. J. Acoust. Soc. Am. 130 (6), 38033811.CrossRefGoogle ScholarPubMed
Bogey, C., Bailly, C. & Juvé, D. 2002 Computation of flow noise using source terms in linearized Euler’s equations. AIAA J. 40 (2), 235243.CrossRefGoogle Scholar
Bowman, J. J., Thomas, B. A., Uslenghi, P. L. E. & Asvestas, J. S. 1970 Electromagnetic and Acoustic Scattering by Simple Shapes. North-Holland.Google Scholar
Candel, S. M. 1979 Numerical solution of wave scattering problems in the parabolic approximation. J. Fluid Mech. 90 (3), 465507.CrossRefGoogle Scholar
Chen, H. & Chan, C. T. 2007 Acoustic cloaking in three dimensions using acoustic metamaterials. Appl. Phys. Lett. 91, 183518.Google Scholar
Chen, P. Y. & Alu, A. 2011 Atomically thin surface cloak using graphene monolayers. ACS Nano 5 (7), 58555863.CrossRefGoogle ScholarPubMed
Chen, P. Y., Soric, J. & Alu, A. 2012a Invisibility and cloaking based on scattering cancellation. Adv. Mater. 24, OP281OP304.Google Scholar
Chen, S. Y., Xia, Z. H., Pei, S. Y., Wang, J. C., Yang, Y. T., Xiao, Z. L. & Shi, Y. P. 2012b Reynolds-stress-constrained large-eddy simulation of wall-bounded turbulent flows. J. Fluid Mech. 703, 128.CrossRefGoogle Scholar
Chen, X. X., Huang, X. & Zhang, X. 2009 Sound radiation from a bypass duct with bifurcations. AIAA J. 47 (2), 429436.Google Scholar
Cummer, S. A. & Schurig, D. 2007 One path to acoustic cloaking. New J. Phys. 9 (45), 18.CrossRefGoogle Scholar
Farhat, M., Enoch, S., Guenneau, S. & Movchan, A. B. 2008 Broadband cylindrical acoustic cloak for linear surface waves in a fluid. Phys. Rev. Lett. 101 (13), 134501.CrossRefGoogle Scholar
García-Meca, C., Carloni, S., Barcelo, C., Jannes, G., Sanchez-Dehesa, J. & Martínez, A. 2009 Analogue transformations in physics and their application to acoustics. Sci. Rep. 3, 15.Google Scholar
Goldstein, M. E. 1975 Aeroacoustics. McGraw-Hill.Google Scholar
Huang, X., Bai, L., Vinogradov, I. & Peers, E. 2012 Adaptive beamforming for array signal processing in aeroacoustic measurements. J. Acoust. Soc. Am. 131 (3), 21522161.Google Scholar
Huang, X., Chen, X. X., Ma, Z. K. & Zhang, X. 2008 Efficient computation of spinning modal radiation through an engine bypass duct. AIAA J. 46 (6), 14131423.CrossRefGoogle Scholar
Huang, X. & Zhang, X. 2006 A Fourier pseudospectral method for some computational aeroacoustics problems. Intl J. Aeroacoust. 5 (3), 279294.Google Scholar
Leonhardt, U. & Tyc, T. 2009 Broadband invisibility by non-Euclidean cloaking. Science 323 (5910), 110112.CrossRefGoogle ScholarPubMed
Lighthill, M. J. 1952 On sound generated aerodynamically. I. General theory. Proc. R. Soc. Lond. A 211, 564587.Google Scholar
Liu, R., Ji, C., Mock, J. J., Chin, J. Y., Cui, T. J. & Smith, D. R. 2009 Broadband ground-plane cloak. Science 323 (5912), 366369.CrossRefGoogle ScholarPubMed
Norris, A. N. 2008 Acoustic cloaking theory. Proc. R. Soc. Lond. A 464 (19), 24112434.Google Scholar
Norris, A. N. 2009 Acoustic metafluids. J. Acoust. Soc. Am. 125 (2), 839849.CrossRefGoogle ScholarPubMed
Peers, E. & Huang, X. 2013 High-order schemes for predicting computational aeroacoustic propagation with adaptive mesh refinement. Acta Mechanica Sin. 29 (2), 111.Google Scholar
Pendry, J. B., Schurig, D. & Smith, D. R. 2006 Controlling electromagnetic fields. Science 312 (5781), 17801782.CrossRefGoogle ScholarPubMed
Popa, B.-I., Zigoneanu, L. & Cummer, S. A. 2011 Experimental acoustic ground cloak in air. Phys. Rev. Lett. 106 (25), 253901.CrossRefGoogle ScholarPubMed
Richards, S. K., Chen, X. X., Huang, X. & Zhang, X. 2007 Computation of fan noise radiation through an engine exhaust geometry with flow. Intl J. Aeroacoust. 6 (3), 223241.CrossRefGoogle Scholar
Richards, S. K., Zhang, X., Chen, X. X. & Nelson, P. A. 2004 Evaluation of non-reflecting boundary conditions for duct acoustic computation. J. Sound Vib. 270 (3), 539557.Google Scholar
Sanchis, L., García-Chocano, V. M., Llopis-Pontiveros, R., Climente, A., Martínez-Pastor, J., Cervera, F. & Sánchez-Dehesa, J. 2013 Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere. Phys. Rev. Lett. 1110 (12), 124301.Google Scholar
Stotts, S. A. & Koch, R. A. 2009 Rough surface scattering in a Born approximation from a two-way coupled-mode formalism. J. Acoust. Soc. Am. 125 (5), EL242EL248.CrossRefGoogle Scholar
Tam, C. K. W. & Webb, J. C. 1993 Dispersion-relation-preserving finite difference schemes for computational acoustics. J. Comput. Phys. 107 (2), 262281.Google Scholar
Vasquez, F. G., Milton, G. W. & Onofrei, D. 2009 Active exterior cloaking for the 2D Laplace and Helmholtz equations. Phys. Rev. Lett. 103 (7), 073901.CrossRefGoogle ScholarPubMed
Yoon, S. & Jameson, A. 1988 Lower–upper symmetric–Gauss–Seidel method for the Euler and Navier–Stokes equations. AIAA J. 26 (9), 10251026.CrossRefGoogle Scholar
Zha, G. C., Shen, Y. & Wang, B. 2011 An improved low diffusion E-CUSP upwind scheme. Comput. Fluids 48 (1), 214220.CrossRefGoogle Scholar
Zhang, S., Xia, C. & Fang, N. 2011 Broadband acoustic cloak for ultrasound waves. Phys. Rev. Lett. 106 (2), 024301.Google Scholar