Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-30T17:42:21.307Z Has data issue: false hasContentIssue false

Unsteady deformations of a free liquid surface caused by radiation pressure

Published online by Cambridge University Press:  26 July 2011

B. ISSENMANN
Affiliation:
Université Bordeaux, Laboratoire Ondes et Matière d'Aquitaine (LOMA), UMR 5798, F-33400 Talence, FranceCNRS, LOMA, UMR 5798, F-33400 Talence, France
R. WUNENBURGER*
Affiliation:
Université Bordeaux, Laboratoire Ondes et Matière d'Aquitaine (LOMA), UMR 5798, F-33400 Talence, FranceCNRS, LOMA, UMR 5798, F-33400 Talence, France
H. CHRAIBI
Affiliation:
Université Bordeaux, Laboratoire Ondes et Matière d'Aquitaine (LOMA), UMR 5798, F-33400 Talence, FranceCNRS, LOMA, UMR 5798, F-33400 Talence, France
M. GANDIL
Affiliation:
Université Bordeaux, Laboratoire Ondes et Matière d'Aquitaine (LOMA), UMR 5798, F-33400 Talence, FranceCNRS, LOMA, UMR 5798, F-33400 Talence, France
J.-P. DELVILLE
Affiliation:
Université Bordeaux, Laboratoire Ondes et Matière d'Aquitaine (LOMA), UMR 5798, F-33400 Talence, FranceCNRS, LOMA, UMR 5798, F-33400 Talence, France
*
Email address for correspondence: [email protected]

Abstract

We present an analytical model of the time-dependent, small-amplitude deformation of a free liquid surface caused by a spatially localized, axisymmetric, pulsed or continuous, acoustic or electromagnetic radiation pressure exerted on the surface. By exactly solving the unsteady Stokes equation, we predict the surface dynamics in all dynamic regimes, namely inertial, intermediate and strongly damped regimes. We demonstrate the validity of this model in all dynamic regimes by comparing its prediction to experiments consisting of optically measuring the time-dependent curvature of the tip of a hump created at a liquid surface by the radiation pressure of an acoustic pulse. Finally, we present a numerical scheme simulating the behaviour of a fluid–fluid interface subjected to a time-dependent radiation pressure and show its accuracy by comparing the numerical predictions with the analytical model in the intermediate and strongly damped regimes.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Berkenbusch, B., Cohen, I. & Zhang, W. W. 2008 Liquid interfaces in viscous straining flows: numerical studies of the selective withdrawal transition. J. Fluid Mech. 613, 171203.CrossRefGoogle Scholar
Bonfillon-Colin, A. 1994 Contribution l'étude des mousses et des émulsions: dynamique interfaciale. PhD thesis, Université Paris 6.Google Scholar
Borgnis, F. E. 1953 Acoustic radiation pressure of planar compressional waves. Rev. Mod. Phys. 25, 653664.CrossRefGoogle Scholar
Chandrasekhar, S. 1955 The character of the equilibrium of an incompressible heavy viscous fluid of variable density. Proc. Camb. Phil. Soc. 51, 162178.Google Scholar
Chraïbi, H., Lasseux, D., Arquis, E., Wunenburger, R. & Delville, J. P. 2008 Stretching and squeezing of sessile dielectric drops by the optical radiation pressure. Phys. Rev. E 77, 066706.Google Scholar
Chu, B. T. & Apfel, R. E. 1982 Acoustic radiation pressure produced by a beam of sound. J. Acoust. Soc. Am. 72, 16731687.CrossRefGoogle Scholar
Cinbis, C. 1992 Noncontacting techniques for measuring surface tension of liquids. PhD thesis, Stanford University.CrossRefGoogle Scholar
Cinbis, C. & Khuri-Yakub, B. T. 1992 A noncontacting technique for measuring surface tension of liquids. Rev. Sci. Instrum. 63, 2048.CrossRefGoogle Scholar
Cinbis, C., Mansour, N. M. & Khuri-Yakub, B. T. 1993 Effect of surface tension on the acoustic radiation pressure-induced motion of the water–air interface. J. Acoust. Soc. Am. 94 (4), 23652372.Google Scholar
Davis, P. J. & Rabinowitz, P. 1984 Methods of Numerical Integration. Academic Press.Google Scholar
Grigorova, B. M., Rastopov, S. F. & Sukhodol'skii, A. T. 1990 Coherent correlation spectroscopy of capillary waves. Sov. Phys. Tech. Phys. 35, 374376.Google Scholar
Issenmann, B., Wunenburger, R., Manneville, S. & Delville, J. P. 2006 Bistability of a compliant cavity induced by acoustic radiation pressure. Phys. Rev. Lett. 97, 074502.Google Scholar
Kamakura, T., Matsuda, K., Kumamoto, Y. & Breazeale, M. A. 1995 Acoustic streaming induced in focused Gaussain beams. J. Acoust. Soc. Am. 97 (5), 27402746.CrossRefGoogle Scholar
Khuri-Yakub, B. T., Reinholdtsen, P. A., Chou, C.-H., Vesecky, J. F. & Teague, C. C. 1988 Ultrasonic excitation and detection of capillary waves for the measurement of surface film properties. Appl. Phys. Lett. 52, 1571.CrossRefGoogle Scholar
Kino, G. S. 1987 Acoustic Waves: Devices, Imaging and Analog Signal Processing. Prentice-Hall.Google Scholar
Komissarova, I. I., Ostrovskaya, G. V. & Shedova, E. N. 1988 Light pressure-induced deformations of a free liquid surface. Optics Comm. 66, 15.CrossRefGoogle Scholar
Lamb, S. H. 1932 Hydrodynamics, 6th edn. Cambridge University Press.Google Scholar
Landau, L. & Lifshitz, E. 1987 Fluid Mechanics, 2nd edn. Butterworth-Heinemann.Google Scholar
Langevin, D. (Ed.) 1992 Light Scattering by Liquid Surfaces and Complementary Techniques, Surfactant Science Series, vol. 41. Marcel Dekker.Google Scholar
Lee, C. P. & Wang, T. G. 1993 Acoustic radiation pressure. J. Acoust. Soc. Am. 94, 10991109.CrossRefGoogle Scholar
Levich, V. G. 1962 Physicochemical Hydrodynamics. Prentice Hall.Google Scholar
Madsen, A., Seydel, T., Sprung, M., Gutt, C., Tolan, M. & Grübel, G. 2004 Capillary waves at the transition from propagating to overdamped behavior. Phys. Rev. Lett. 92 (9), 096104.CrossRefGoogle ScholarPubMed
Manga, M. & Stone, H. A. 1994 Low Reynolds number motion of bubbles, drops and rigid spheres through fluid–fluid interfaces. J. Fluid Mech. 287, 279298.CrossRefGoogle Scholar
Mitani, S. & Sakai, K. 2002 Measurement of ultralow interfacial tension with a laser interface manipulation technique. Phys. Rev. E 66, 031604.CrossRefGoogle ScholarPubMed
Mitani, S. & Sakai, K. 2005 Observation of interfacial tension minima in oil–water-surfactant systems with laser manipulation technique. Faraday Discuss. 129, 141153.CrossRefGoogle ScholarPubMed
Monroy, F. & Langevin, D. 1998 Direct experimental observation of the crossover from capillary to elastic surface waves on soft gels. Phys. Rev. Lett. 81, 31673170.Google Scholar
Occhialini, J. M., Muldowney, G. P. & Higdon, J. J. L. 1992 Boundary integral/spectral element approaches to the Navier–Stokes equations. Intl J. Numer. Methods Fluids 15, 13611381.Google Scholar
Ostrovskaya, G. V. 1988 a Deformation of the free surface of a liquid under the pressure of light. I. Theory. Sov. Phys. Tech. Phys. 33 (4), 465468.Google Scholar
Ostrovskaya, G. V. 1988 b Deformation of the free surface of a liquid under the pressure of light. II. Experiment. Sov. Phys. Tech. Phys. 33 (4), 468470.Google Scholar
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.CrossRefGoogle Scholar
Pozrikidis, C. 2002 A Practical Guide to Boundary Element Methods with the Software Library BEMLIB. Chapmann and Hall/CRC.CrossRefGoogle Scholar
Prosperetti, A. 1976 Viscous effects on small-amplitude surface waves. Phys. Fluids 19, 195203.CrossRefGoogle Scholar
Sakai, K., Honda, H. & Hirakoa, Y. 2005 Rapid ripplon spectroscopy with ms time resolution. Rev. Sci. Instrum. 76, 063908.Google Scholar
Sakai, K., Mizumo, D. & Takagi, K. 2001 Measurement of liquid surface properties by laser-induced surface deformation spectroscopy. Phys. Rev. E 63, 043602.CrossRefGoogle ScholarPubMed
Sakai, K., Tachibana, K., Mitani, S. & Takagi, K. 2003 Laser excitation of high frequency capillary waves. J. Colloid Interface Sci. 264, 446451.Google Scholar
Sakai, K. & Yamamoto, Y. 2006 Electric field tweezers for characterization of liquid surface. Appl. Phys. Lett. 89, 211911.CrossRefGoogle Scholar
Saleh, B. & Teich, M. 1991 Fundamentals of Photonics. Wiley.CrossRefGoogle Scholar
Sherwood, J. D. 1987 Breakup of fluid droplets in electric and magnetic fields. J. Fluid Mech. 188, 133146.CrossRefGoogle Scholar
Sohl, C. H., Miyano, K. & Ketterson, J. B. 1978 Novel technique for dynamic surface tension and viscosity measurements at liquid–gas interfaces. Rev. Sci. Instrum. 49, 14641469.CrossRefGoogle ScholarPubMed
Stenvot, C. & Langevin, D. 1988 Study of viscoelasticity of soluble monolayers using analysis of propagation of excited capillary waves. Langmuir 4, 11791183.CrossRefGoogle Scholar
Stockhausen, N. 1985 Method and apparatus for measuring and/or monitoring the surface tension of a fluid. US patent 4,611,486.Google Scholar
Weast, R. C. (Ed.) 1971 Handbook of Chemistry and Physics, 52nd edn. The Chemical Rubber Co.Google Scholar
Williams, R. O. 2005 Non-contact techniques for measuring viscosity and surface tension information of a liquid. US patent 6,925,856,B1.Google Scholar
Wunenburger, R., Casner, A. & Delville, J.-P. 2006 Light-induced deformation and instability of a liquid interface. I. Statics. Phys. Rev. E 73, 036314.Google Scholar
Yoshitake, Y., Mitani, S., Sakai, K. & Takagi, K. 2005 Measurement of high viscosity with laser induced surface deformation technique. J. Appl. Phys. 97, 024901.CrossRefGoogle Scholar
Zhang, J. Z. & Chang, R. K. 1988 Shape distortion of a single water droplet by laser-induced electrostriction. Optics Lett. 13, 916918.Google Scholar
Zhang, Z. & Mori, Y. H. 1993 Formulation of the Harkins–Brown correction factor for drop-volume description. Ind. Engng Chem. Res. 32, 29502952.Google Scholar