Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-21T22:01:25.830Z Has data issue: false hasContentIssue false

Two-layer quasi-geostrophic singular vortices embedded in a regular flow. Part 1. Invariants of motion and stability of vortex pairs

Published online by Cambridge University Press:  25 July 2007

GREGORY REZNIK
Affiliation:
P. P. Shirshov Institute of Oceanology, 36 Nakhimovsky Prosp., Moscow 117997, Russia
ZIV KIZNER*
Affiliation:
Departments of Physics and Mathematics, Bar-Ilan University, Ramat-Gan 52900, Israel
*
Author to whom correspondence should be addressed: [email protected]

Abstract

The concept of a quasi-geostrophic singular vortex is extended to several types of two-layer model: a rigid-lid two-layer, a free-surface two-layer and a -layer model with two active and one passive layer. Generally, a singular vortex differs from a conventional point vortex in that the intrinsic vorticity of a singular vortex, in addition to delta-function, contains an exponentially decaying term. The theory developed herein occupies an intermediate position between discrete and fully continuous multilayer models, since the regular flow and its interaction with the singular vortices are also taken into account. A system of equations describing the joint evolution of the vortices and the regular field is presented, and integrals expressing the conservation of enstrophy, energy, momentum and mass are derived. Using these integrals, the initial phases of evolution of an individual singular vortex confined to one layer and of a coaxial pair of vortices positioned in different layers of a two-layer fluid on a beta-plane are described. A valuable application of the conservation integrals is related to the stability analysis of point-vortex pairs within the -layer model, -layer model, and free-surface two-layer model on the f-plane. Such vortex pairs are shown to be nonlinearly stable with respect to any small perturbation provided its regular-flow energy and enstrophy are finite.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Flierl, G. R. 1987 Isolated eddy models in geophysics. Annu. Rev. Fluid Mech. 19, 493530.CrossRefGoogle Scholar
Flierl, G. R., Larichev, V. D., McWilliams, J. C. & Reznik, G. M. 1980 The dynamics of baroclinic and barotropic solitary eddies. Dyn. Atmos. Oceans. 5, 141.CrossRefGoogle Scholar
Griffiths, R. W. & Hopfinger, E. J. 1986 Experiments with baroclinic vortex pair in a rotating fluid. J. Fluid Mech. 173, 501518.CrossRefGoogle Scholar
Gryanik, V. M. 1983 Dynamics of singular geostrophic vortices in a two-layer model of the atmosphere (ocean). Izv. Atmos. Ocean Phys. 19, 227240.Google Scholar
Gryanik, V. M. 1986 Singular geostrophic vortices on the β-plane as a model for synoptic vortices. Oceanology 26, 126130.Google Scholar
Gryanik, V. M. 1988 Localized vortices – ‘vortex charges’ and ‘vortex filaments’ in a baroclinic differentially rotating fluid. Izv. Atmos. Ocean Phys. 24, 919926.Google Scholar
Gryanik, V. M. & Tevs, M. V. 1989 Dynamics of singular geostrophic vortices in an N-layer model of the atmosphere (ocean). Izv. Atmos. Ocean Phys. 25, 179188.Google Scholar
Gryanik, V. M. & Tevs, M. V. 1991 Dynamics of singular geostrophic vortices near critical current points in an N-level model of the atmosphere (ocean). Izv. Atmos. Ocean Phys. 27, 517526.Google Scholar
Gryanik, V. M. & Tevs, M. V. 1997 Dynamics and energetics of heton interactions in linearly and exponentially stratified media. Izv. Atmos. Ocean Phys. 33, 419433.Google Scholar
Gryanik, V. M., Borth, H. & Olbers, D. 2004 The theory of quasi-geostrophic von Kármán vortex streets in the two-layer fluids on a beta-plane. J. Fluid Mech. 505, 2357.CrossRefGoogle Scholar
Gryanik, V. M., Sokolovskiy, M. A. & Verron, J. 2006 Dynamics of heton-like vortices. Regular Chaotic Dyn. 11 (3), 139191.CrossRefGoogle Scholar
Hobson, D. D. 1991 A point vortex dipole model of an isolated modon. Phys. Fluids A 3, 30273033.CrossRefGoogle Scholar
Hogg, N. G. & Stommel, H. M. 1985 a The heton, an elementary interaction between discrete baroclinic geostrophic vortices, and its implications concerning eddy heat-flow. Proc. R. Soc. Lond. 397, 120.Google Scholar
Hogg, N. G. & Stommel, H. M. 1985 b Hetonic explosions: the breakup and spread of warm pools as explained by baroclinic point vortices. J. Atmos. Phys. 42, 14651476.2.0.CO;2>CrossRefGoogle Scholar
Kamenkovich, V. M., Koshlyakov, M. N. & Monin, A. S. 1986 Synoptic Eddies in the Ocean. Reidel, The Netherlands.CrossRefGoogle Scholar
Kizner, Z. 2006 Stability and transitions of hetonic quartets and baroclinic modons. Phys. Fluids 18, 056601/12.CrossRefGoogle Scholar
Kizner, Z., Berson, D. & Khvoles, R. 2002 Baroclinic modon equilibria on the beta-plane: stability and transitions. J. Fluid Mech. 468, 239270.CrossRefGoogle Scholar
Kono, M. & Horton, W. 1991 Point vortex description of drift wave vortices: dynamics and transport. Phys. Fluids B 3, 32553262.CrossRefGoogle Scholar
Legg, S. & Marshall, J. 1993 A heton model of the spreading stage of open-ocean deep convection. J. Phys. Oceanogr. 23, 10401056.2.0.CO;2>CrossRefGoogle Scholar
Morikawa, G. K. 1960 Geostrophic vortex motion. J. Atmos. Sci. 17, 148158.Google Scholar
Obukhov, A. M. 1949 On the question of geostrophic wind. Izv. Acad. Nauk SSSR Geograph. Geophys. 13, 281286.Google Scholar
Pedlosky, J. 1985 The instability of continuous heton clouds. J. Atmos. Sci. 42, 14771486.2.0.CO;2>CrossRefGoogle Scholar
Reznik, G. M. 1986 Point vortices on a β-plane and Rossby solitary waves. Oceanology 26, 165173.Google Scholar
Reznik, G. M. 1992 Dynamics of singular vortices on a β-plane. J. Fluid Mech. 240, 405432.CrossRefGoogle Scholar
Reznik, G., Grimshaw, R. & Sriskandarajah, H. J. 1997 On basic mechanisms governing two-layer vortices on a beta-plane. Geoph. Astrophys. Fluid Dyn. 86, 142.CrossRefGoogle Scholar
Sokolovskiy, M. A. & Verron, J. 2000 Four-vortex motion in the two-layer approximation: Integrable case. Regular Chaotic Dyn. 5, 413436.CrossRefGoogle Scholar
Sokolovskiy, M. A. & Verron, J. 2002 Dynamics of triangular two-layer vortex structures with zero total intensity. Regular Chaotic Dyn. 7, 435472.CrossRefGoogle Scholar
Sokolovskiy, M. A. & Verron, J. 2004 Dynamics of three vortices in a two-layer rotating fluid. Regular Chaotic Dyn. 9, 417438.CrossRefGoogle Scholar
VelascoFuentes, O. U. Fuentes, O. U. & van Heijst, G. J. F. 1994 Experimental study of dipolar vortices on a topographic β-plane. J. Fluid Mech. 259, 79106.Google Scholar
VelascoFuentes, O. U. Fuentes, O. U. & van Heijst, G. J. F. 1995 Collision of dipolar vortices on a β-plane. Phys. Fluids 7, 27352750.CrossRefGoogle Scholar
Young, W. R. 1985 Some interactions between small numbers of baroclinic, geostrophic vortices. Geophys. Astrophys. Fluid Dyn. 33, 3561.CrossRefGoogle Scholar
Zabusky, N. J. & McWilliams, J. C. 1982 A modulated point-vortex model for geostrophic, β-plane dynamics. Phys. Fluids 25, 21752182.CrossRefGoogle Scholar