Published online by Cambridge University Press: 28 March 2006
An infra-red heat-transfer gauge was used in a shock tube for end-wall measurements of the convective heat transfer from argon behind the reflected shock. The thermal conductivity of neutral (un-ionized) argon was measured before the ionization-relaxation time, and was fitted with the power-law temperature dependence 4·2 × 10−5(T/300)0·76±0·03 cal/sec cm°K, where T is measured in °K, and ±0·03 refers to the probable error The free-stream temperature ranged from 20,000 to 75,000°K, corresponding to incident-shock velocities from 3 to 6mm/μsec. At later times, after the free stream established equilibrium ionization, the convective-heat-transfer rate remained the same as the initial rate with neutral argon. Theoretical predictions of Fay & Kemp (1965), assuming equilibrium-boundary-layer conditions, are 20–30% below the experimental values. Also reported in this paper are measurements of the ionization times behind the reflected shock, and these are in agreement with an extrapolation of the Petschek & Byron (1957) measurements behind the incident shock. There is a discussion of the large changes in the gas conditions behind the reflected shock due to the ionization process. The final equilibrium conditions are reached abruptly, as indicated by the continuum-radiation emission which becomes constant immediately after ionization relaxation.