Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T05:08:39.587Z Has data issue: false hasContentIssue false

Structural and stability characteristics of jets in crossflow

Published online by Cambridge University Press:  07 November 2014

D. R. Getsinger
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095-1597, USA
L. Gevorkyan
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095-1597, USA
O. I. Smith
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095-1597, USA
A. R. Karagozian*
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095-1597, USA
*
Email address for correspondence: [email protected]

Abstract

This experimental study examines the relationship between transverse jet structural characteristics and the shear layer instabilities forming on the upstream side of the jet column. Jets composed of mixtures of helium and nitrogen were introduced perpendicularly into a low-speed wind tunnel using several alternative injectors: convergent circular nozzles mounted either flush with or elevated above the tunnel floor, and a flush-mounted circular pipe. Both non-intrusive optical diagnostics (planar laser-induced fluorescence (PLIF) and particle image velocimetry (PIV)) and intrusive probe-based (hot-wire anemometry) measurements were used to explore a range of jet-to-crossflow momentum flux ratios and density ratios for which previous studies have identified upstream shear layer transition from convective to absolute instability. Remarkable correspondences were identified between formation of the well-known counter-rotating vortex pair (CVP) associated with the jet cross-section and conditions producing strong upstream shear layer vorticity rollup, arising typically from absolute instability in the shear layer. In contrast, asymmetries in the jet mean cross-sectional shape and/or lack of a clear CVP were observed to correspond to weaker, convectively unstable jet shear layers.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves, L. S. de B., Kelly, R. E. & Karagozian, A. R. 2008 Transverse-jet shear-layer instabilities. Part 2. Linear analysis for large jet-to-crossflow velocity ratio. J. Fluid Mech. 602, 383401.Google Scholar
Andreopoulos, J. 1985 On the structure of jets in a crossflow. J. Fluid Mech. 157, 163197.Google Scholar
Beresh, S. J., Henfling, J. F., Erven, R. J. & Spillers, R. W. 2006 Crossplane velocimetry of a transverse supersonic jet in a transonic crossflow. AIAA J. 44, 30513061.Google Scholar
Camussi, R., Guj, G. & Stella, A. 2002 Experimental study of a jet in a crossflow at very low Reynolds number. J. Fluid Mech. 454, 113144.Google Scholar
Cortelezzi, L. & Karagozian, A. R. 2001 On the formation of the counter-rotating vortex pair in transverse jets. J. Fluid Mech. 446, 347373.Google Scholar
Davitian, J., Getsinger, D., Hendrickson, C. & Karagozian, A. R. 2010 Transition to global instability in transverse-jet shear layers. J. Fluid Mech. 661, 294315.CrossRefGoogle Scholar
Fric, T. F. & Roshko, A. 1988 Views of the transverse jet near field. Phys. Fluids 31 (9), 2390.Google Scholar
Fric, T. F. & Roshko, A. 1994 Vortical structure in the wake of a transverse jet. J. Fluid Mech. 279, 147.CrossRefGoogle Scholar
Getsinger, D. R.2012 Shear layer instabilities and mixing in variable density transverse jet flows. PhD thesis, University of California, Los Angeles.Google Scholar
Getsinger, D. R., Hendrickson, C. & Karagozian, A. R. 2012 Shear layer instabilities in low-density transverse jets. Exp. Fluids 53, 783801.Google Scholar
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473537.Google Scholar
Jendoubi, S. & Strykowski, P. J. 1994 Absolute and convective instability of axisymmetric jets with external flow. Phys. Fluids 6, 30003009.Google Scholar
Kamotani, Y. & Greber, I. 1972 Experiments on a turbulent jet in a cross flow. AIAA J. 10 (11), 14251429.Google Scholar
Karagozian, A. R. 2010 Transverse jets and their control. Prog. Energy Combust. Sci. 36, 531553.Google Scholar
Karagozian, A. R. 2014 The jet in crossflow. Phys. Fluids 26, 101303.Google Scholar
Kelso, R. M., Lim, T. T. & Perry, A. E. 1996 An experimental study of round jets in cross-flow. J. Fluid Mech. 306, 111144.Google Scholar
Kelso, R. M. & Smits, A. J. 1995 Horseshoe vortex systems resulting from the interaction between a laminar boundary layer and a transverse jet. Phys. Fluids 7, 153158.Google Scholar
Kuzo, D. M.1995 An experimental study of the turbulent transverse jet. PhD thesis, California Institute of Technology.Google Scholar
Lim, T. T., New, T. H. & Luo, S. C. 2001 On the development of large-scale structures of a jet normal to a cross flow. Phys. Fluids 13 (3), 770775.Google Scholar
Lozano, A.1992 Laser-excited luminescent tracers for planar concentration measurements in gaseous jets. PhD thesis, Stanford University, Department of Mechanical Engineering.Google Scholar
Lozano, A., Yip, B. & Hanson, R. K. 1992 Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence. Exp. Fluids 13, 369376.Google Scholar
Mahesh, K. & Iyer, P. 2013 Numerical study of shear layer instability in transverse jets. Bull. Am. Phys. Soc. 58 (18), 174.Google Scholar
Margason, R. J.1993 Fifty years of jet in cross flow research. AGARD-CP-534, vol. 1, pp. 1–41.Google Scholar
Megerian, S., Davitian, J., Alves, L. S. de B. & Karagozian, A. R. 2007 Transverse-jet shear-layer instabilities. Part 1. Experimental studies. J. Fluid Mech. 593, 93129.Google Scholar
Moussa, Z. M., Trischka, J. W. & Eskinazi, S. 1977 The nearfield in the mixing of a round jet with a cross-stream. J. Fluid Mech. 80, 4980.Google Scholar
Muldoon, F. & Acharya, S. 2010 Direct numerical simulation of pulsed jets in crossflow. Comput. Fluids 39, 17451773.Google Scholar
Muppidi, S. & Mahesh, K. 2007 Direct numerical simulation of round turbulent jets in crossflow. J. Fluid Mech. 574, 5984.Google Scholar
Narayanan, S., Barooah, P. & Cohen, J. M. 2003 Dynamics and control of an isolated jet in crossflow. AIAA J. 41 (12), 23162330.Google Scholar
New, T. H., Lim, T. T. & Luo, S. C. 2006 Effects of jet velocity profiles on a round jet in cross-flow. Exp. Fluids 40, 859875.CrossRefGoogle Scholar
Poling, B. E., Prausnitz, J. M. & O’Connell, J. P. 2001 The Properties of Gases and Liquids, 5th edn. McGraw-Hill.Google Scholar
Shan, J. & Dimotakis, P. 2006 Reynolds-number effects and anisotropy in transverse-jet mixing. J. Fluid Mech. 566, 4796.Google Scholar
Smith, S. H. & Mungal, M. G. 1998 Mixing, structure and scaling of the jet in crossflow. J. Fluid Mech. 357, 83122.CrossRefGoogle Scholar
Su, L. K. & Mungal, M. G. 2004 Simultaneous measurements of scalar and velocity field evolution in turbulent crossflowing jets. J. Fluid Mech. 513, 145.Google Scholar
Thurber, M. C., Grisch, F., Kirby, B. J., Votsmeier, M. & Hanson, R. K. 1998 Measurements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics. Appl. Opt. 37, 49634978.Google Scholar
Yuan, L. L. & Street, R. L. 1998 Trajectory and entrainment of a round jet in crossflow. Phys. Fluids 10, 23232335.CrossRefGoogle Scholar