Published online by Cambridge University Press: 26 April 2006
The stability or instability of various linear shear flows in shallow water is considered. The linearized equations for waves on the surface of each flow are solved exactly in terms of known special functions. For unbounded shear flows, the exact reflection and transmission coefficients R and T for waves incident on the flow, are found. They are shown to satisfy the relation |R|2= 1+ |T|2, which proves that over reflection occurs at all wavenumbers. For flow bounded by a rigid wall, R is found. The poles of R yield the eigenvalue equation from which the unstable mides can be found. For flow in a channel, with two rigid walls, the eigenvalue equation for the modes is obtained. The results are compared with previous numerical results.