Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-20T17:54:36.489Z Has data issue: false hasContentIssue false

Spreading and sedimentation from bottom-propagating particle-bearing jets

Published online by Cambridge University Press:  20 November 2020

Mohnish Kapil
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, MH400076, India
Bruce R. Sutherland*
Affiliation:
Department of Physics, University of Alberta, Edmonton, ABT6G 2E1, Canada Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, ABT6G 2E3, Canada
Sridhar Balasubramanian*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, MH400076, India IDP in Climate Studies, Indian Institute of Technology Bombay, Mumbai, MH400076, India
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

Laboratory experiments are conducted to examine the evolution of and sedimentation from a particle-bearing jet advancing along a horizontal or downward-sloping boundary underlying a uniform-density ambient fluid. The jet front advances along the bottom while exhibiting a self-similar profile. As the jet propagates downstream, particles settle out, resulting in a teardrop-shaped sediment bed whose geometric parameters are measured non-intrusively using a light attenuation technique. The bed shape is well represented by the theory that assumes a Gaussian radial profile of velocity within the jet and accounts for the bedload transport of particles after they settle. In particular, the bed length is given by $l_0 = (1.8 \pm 0.4) [M_0/(g^\prime d_p)]^{1/2}$, in which $M_0$ is the source momentum flux, $g^\prime$ is the reduced gravity of the particles and $d_p$ is the particle diameter. The corresponding scale for the sediment depth captures the anticipated order of magnitude for the maximum depth of deposit, but the measurements indicate additional dependence upon $M_0$, suggesting that the morphology of the bed non-negligibly influences particle settling.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bacik, K. A., Lovett, S., Caulfield, C. P. & Vriend, N. M. 2020 Wake induced long range repulsion of aqueous dunes. Phys. Rev. Lett. 124, 054501.CrossRefGoogle ScholarPubMed
Balasubramanian, S., Mirajkar, H. & Banerjee, A. K. 2018 Role of dispersed particles on the dynamics of an umbrella cloud of a forced plume in a linearly stratified environment. Environ. Fluid Mech. 18, 9851006.CrossRefGoogle Scholar
Bhamidipati, N. & Woods, Andrew W. 2017 On the dynamics of starting plumes. J. Fluid Mech. 833, 112.CrossRefGoogle Scholar
Bonnecaze, R. T., Huppert, H. E. & Lister, J. R. 1993 Particle-driven gravity currents. J. Fluid Mech. 250, 339369.CrossRefGoogle Scholar
Bonnecaze, R. T. & Lister, J. R. 1999 Particle-driven gravity currents down planar slopes. J. Fluid Mech. 390, 7591.CrossRefGoogle Scholar
Brown, P. P. & Lawler, D. F. 2003 Sphere drag and settling velocity revisited. J. Environ. Engng 129 (3), 222231.CrossRefGoogle Scholar
Carazzo, G., Kaminski, E. & Tait, S. 2006 The route to self-similarity in turbulent jets and plumes. J. Fluid Mech. 547, 137148.CrossRefGoogle Scholar
Charru, F., Andreotti, B. & Claudin, P. 2013 Sand ripples and dunes. Annu. Rev. Fluid Mech. 45, 469493.CrossRefGoogle Scholar
Eames, I. & Dalziel, S. B. 2000 Dust resuspension by the flow around an impacting sphere. J. Fluid Mech. 403, 305328.CrossRefGoogle Scholar
Ernst, G. J., Sparks, R. J. S., Carey, S. N. & Bursik, M. I. 1996 Sedimentation from turbulent jets and plumes. J. Geophys. Res. 101, 55755589.CrossRefGoogle Scholar
Fleckhaus, D., Hishida, K. & Maeda, M. 1987 Effect of laden solid particles on the turbulent flow structure of a round free jet. Exp. Fluids 5, 323333.CrossRefGoogle Scholar
Gharib, M., Rambod, E. & Shariff, K. 1998 A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121140.CrossRefGoogle Scholar
Gomez, B. 1991 Bedload transport. Earth-Sci. Rev. 31, 89132.CrossRefGoogle Scholar
Hardalupas, Y., Taylor, A. M. K. P., Whitelaw, J. H. & Weinberg, F. J. 1989 Velocity and particle-flux characteristics of turbulent particle-laden jets. Proc. R. Soc. Lond. A 426 (1870), 3178.Google Scholar
Hersen, P., Douady, S. & Andreotti, B. 2002 Relevant length scale of Barchan dunes. Phys. Rev. Lett. 89, 264301.CrossRefGoogle ScholarPubMed
Hunt, G. R. & Kaye, N. G. 2005 Lazy plumes. J. Fluid Mech. 533, 329338.CrossRefGoogle Scholar
Hunt, G. R. & Linden, P. F. 2001 Steady-state flows in an enclosure ventilated by buoyancy forces assisted by wind. J. Fluid Mech. 426, 355386.CrossRefGoogle Scholar
Kneller, B. & Buckee, C. 2000 The structure and fluid mechanics of turbidity currents: a review of some recent studies and their geological implications. Sedimentology 47, 6294.CrossRefGoogle Scholar
Lee, W. Y., Li, A. C. Y. & Lee, J. H. W. 2013 Structure of a horizontal sediment-laden momentum jet. J. Hydraul. Engng ASCE 139 (2), 124140.CrossRefGoogle Scholar
Lippert, M. C. & Woods, A. W. 2020 Experiments on the sedimentation front in steady particle-driven gravity currents. J. Fluid Mech. 889, A20.CrossRefGoogle Scholar
McConnochie, C. D., Cenedese, C. & McElwaine, J. N. 2020 Surface expression of a wall fountain: application to subglacial discharge plumes. J. Phys. Oceangr. 50, 12451263.CrossRefGoogle Scholar
Meiburg, E. & Kneller, B. 2010 Turbidity currents and their deposits. Annu. Rev. Fluid Mech. 42, 135156.CrossRefGoogle Scholar
Morton, B. R. 1959 Forced plumes. J. Fluid Mech. 5, 151163.CrossRefGoogle Scholar
Morton, B. R., Taylor, G. & Turner, J. S. 1956 Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. A 234 (1196), 123.Google Scholar
Munro, R. J. & Dalziel, S. B. 2005 Attenuation technique for measuring sediment displacement levels. Exp. Fluids 39 (3), 602613.CrossRefGoogle Scholar
Parker, D. A., Burridge, H. C., Partridge, J. L. & Linden, P. F. 2020 A comparison of entrainment in turbulent line plumes adjacent to and distant from a vertical wall. J. Fluid Mech. 882, A4.CrossRefGoogle Scholar
Picano, F., Sardina, G., Gualtieri, P. & Casciola, C. 2011 Particle-laden jets: particle distribution and back-reaction on the flow. J. Phys.: Conf. Ser. 318, 052018.Google Scholar
de Rooij, F. & Dalziel, S. B. 2001 Time- and space-resolved measurements of deposition under turbidity currents. Spec. Publs. Int. Ass. Sediment. 31, 207215.Google Scholar
van Reeuwijk, M., Salizzoni, P., Hunt, G. R. & Craske, J. 2016 Turbulent transport and entrainment in jets and plumes: a DNS study. Phys. Rev. Fluids 1, 074301.CrossRefGoogle Scholar
Shields, A. 1936 Anwendung der Aehnlichkeitsmechanick und der Turbulenzforschung auf die Geschiebebewegung. PhD Thesis, TU Delft, the Netherlands.Google Scholar
Shuen, J. S., Solomon, A. S. P., Zhang, Q. F. & Faeth, G. M. 1985 Structure of particle-laden jets: measurements and predictions. AIAA J. 23, 396404.CrossRefGoogle Scholar
Sutherland, B. R. & Hong, Y. S. 2016 Sedimentation from particle-bearing plumes in a stratified ambient. Phys. Rev. Fluids 1, 074302.CrossRefGoogle Scholar
Sutherland, B. R., Rosevear, M. G. & Cenedese, C. 2020 Laboratory experiments modelling the transport and deposition of sediments by glacial plumes rising under an ice shelf. Phys. Rev. Fluids 5, 013802.CrossRefGoogle Scholar