Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-22T13:33:12.208Z Has data issue: false hasContentIssue false

Reopening modes of a collapsed elasto-rigid channel

Published online by Cambridge University Press:  18 April 2017

Lucie Ducloué*
Affiliation:
Manchester Centre for Nonlinear Dynamics and School of Physics and Astronomy – University of Manchester, Oxford Road, Manchester M13 9PL, UK
Andrew L. Hazel
Affiliation:
Manchester Centre for Nonlinear Dynamics and School of Mathematics – University of Manchester, Oxford Road, Manchester M13 9PL, UK
Alice B. Thompson
Affiliation:
Manchester Centre for Nonlinear Dynamics and School of Mathematics – University of Manchester, Oxford Road, Manchester M13 9PL, UK
Anne Juel
Affiliation:
Manchester Centre for Nonlinear Dynamics and School of Physics and Astronomy – University of Manchester, Oxford Road, Manchester M13 9PL, UK
*
Present address: Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), UMR CNRS 7636, PSL – ESPCI Paris, Sorbonne Université – UPMC – Univ. Paris 06, Sorbonne Paris Cité – UPD – Univ. Paris 07, 10 rue Vauquelin, 75005 Paris, France. Email address for correspondence: [email protected]

Abstract

Motivated by the reopening mechanics of strongly collapsed airways, we study the steady propagation of an air finger through a collapsed oil-filled channel with a single compliant wall. In a previous study using fully compliant elastic tubes, a ‘pointed’ air finger was found to propagate at high speed and low pressure, which, if clinically accessible, offers the potential for rapid reopening of highly collapsed airways with minimal tissue damage (Heap & Juel Phys. Fluids, vol. 20 (8), 2008, 081702). The mechanism underlying the selection of that pointed finger, however, remained unexplained. In this paper, we identify the required selection mechanism by conducting an experimental study in a simpler geometry: a rigid rectangular Hele-Shaw channel with an elastic top boundary. The constitutive behaviour of this elasto-rigid channel is nonlinear and broadly similar to that of an elastic tube, but unlike the tube, the channel’s cross-section adopts self-similar shapes from the undeformed state to the point of first near wall contact. The ensuing simplification of the vessel geometry enables the systematic investigation of the reopening dynamics in terms of increasing initial collapse. We find that for low levels of initial collapse, a single centred symmetric finger propagates in the channel and its shape is set by the tip curvature. As the level of collapse increases, the channel cross-section develops a central region of near opposite wall contact, and the finger shape evolves smoothly towards a ‘flat-tipped’ finger whose geometry is set by the strong depth gradient near the channel walls. We show that the flat-tipped mode of reopening is analogous to the pointed finger observed in tubes. Its propagation is sustained by the vessel’s extreme cross-sectional profile at high collapse, while vessel compliance is necessary to stabilise it. A simple scaling argument based on the dissipated power reveals that this reopening mode is preferred at higher propagation speeds when it becomes favourable to displace the elastic channel wall rather than the viscous fluid.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Housseiny, T. T., Christov, I. C. & Stone, H. A. 2013 Two-phase fluid displacement and interfacial instabilities under elastic membranes. Phys. Rev. Lett. 111 (3), 034502.Google Scholar
Al-Housseiny, T. T. & Stone, H. A. 2013 Controlling viscous fingering in tapered Hele-Shaw cells. Phys. Fluids 25 (9), 092102.CrossRefGoogle Scholar
Al-Housseiny, T. T., Tsai, P. A. & Stone, H. A. 2012 Control of interfacial instabilities using flow geometry. Nat. Phys. 8 (10), 747750.Google Scholar
Ben Amar, M., Combescot, R. & Couder, Y. 1993 Viscous fingering with adverse anisotropy: a new Saffman–Taylor finger. Phys. Rev. Lett. 70 (20), 30473050.CrossRefGoogle Scholar
Bensimon, D. 1986 Stability of viscous fingering. Phys. Rev. A 33 (2), 13021308.Google Scholar
Bland, R. D. 2001 Loss of liquid from the lung lumen in labor: more than a simple squeeze. Am. J. Physiol.-Lung C 280 (4), L602L605.CrossRefGoogle ScholarPubMed
Borno, R. T., Steinmeyer, J. D. & Maharbiz, M. M. 2006 Transpiration actuation: the design, fabrication and characterization of biomimetic microactuators driven by the surface tension of water. J. Micromech. Microengng 16 (11), 2375.Google Scholar
Bretherton, F. P. 1961 The motion of long bubbles in tubes. J. Fluid Mech. 10 (2), 166188.Google Scholar
Combescot, R. 1994 Saffman–Taylor fingers with adverse anisotropic surface tension. Phys. Rev. E 49 (5), 41724178.Google Scholar
Couder, Y., Gerard, N. & Rabaud, M. 1986 Narrow fingers in the Saffman–Taylor instability. Phys. Rev. A 34 (6), 51755178.Google Scholar
Flaherty, J. E., Keller, J. B. & Rubinow, S. I. 1972 Post buckling behavior of elastic tubes and rings with opposite sides in contact. SIAM J. Appl. Maths 23 (4), 446455.CrossRefGoogle Scholar
Franco-Gómez, A., Thompson, A. B., Hazel, A. L. & Juel, A. 2016 Sensitivity of Saffman–Taylor fingers to channel depth perturbations. J. Fluid Mech. 794, 343368.CrossRefGoogle Scholar
Gaver, D. P. III, Halpern, D., Jensen, O. E. & Grotberg, J. B. 1996 The steady motion of a semi-infinite bubble through a flexible-walled channel. J. Fluid Mech. 319, 2565.Google Scholar
Gaver, D. P. III, Samsel, R. W. & Solway, J. 1990 Effects of surface tension and viscosity on airway reopening. J. Appl. Phys. 69 (1), 7485.Google ScholarPubMed
Grotberg, J. B. & Jensen, O. E. 2004 Biofluid mechanics in flexible tubes. Ann. Rev. Fluid Mech. 36 (1), 121147.Google Scholar
Halpern, D. & Grotberg, J. B. 1992 Fluid-elastic instabilities of liquid-lined flexible tubes. J. Fluid Mech. 244, 615632.CrossRefGoogle Scholar
Hazel, A. L. & Heil, M. 2003 Three-dimensional airway reopening: the steady propagation of a semi-infinite bubble into a buckled elastic tube. J. Fluid Mech. 478, 4770.Google Scholar
Heap, A.2008 The reopening of a collapsed, fluid-filled elastic tube. PhD thesis, University of Manchester.Google Scholar
Heap, A. & Juel, A. 2008 Anomalous bubble propagation in elastic tubes. Phys. Fluids 20 (8), 081702.Google Scholar
Heap, A. & Juel, A. 2009 Bubble transitions in strongly collapsed elastic tubes. J. Fluid Mech. 633, 485507.Google Scholar
Heil, M. 1999 Minimal liquid bridges in non-axisymmetrically buckled elastic tubes. J. Fluid Mech. 380, 309337.Google Scholar
Hoberg, T. B., Verneuil, E. & Hosoi, A. E. 2014 Elastocapillary flows in flexible tubes. Phys. Fluids 26 (12), 122103.Google Scholar
Hodson, W. A. 1991 The First Breath, pp. 16651675. Raven.Google Scholar
Jensen, M. H., Libchaber, A., Pelcé, P. & Zocchi, G. 1987 Effect of gravity on the Saffman–Taylor meniscus: theory and experiment. Phys. Rev. A 35 (5), 22212227.Google ScholarPubMed
Jensen, O. E., Horsburgh, M. K., Halpern, D. & Gaver, D. P. III 2002 The steady propagation of a bubble in a flexible-walled channel: asymptotic and computational models. Phys. Fluids 14 (2), 443457.Google Scholar
Juel, A. & Heap, A. 2007 The reopening of a collapsed fluid-filled elastic tube. J. Fluid Mech. 572, 287310.Google Scholar
Lister, J. R, Peng, G. G & Neufeld, J. A 2013 Viscous control of peeling an elastic sheet by bending and pulling. Phys. Rev. Lett. 111 (15), 154501.Google Scholar
de Lózar, A., Heap, A., Box, F., Hazel, A. L. & Juel, A. 2009 Tube geometry can force switchlike transitions in the behavior of propagating bubbles. Phys. Fluids 21 (10), 101702.Google Scholar
Macklem, P. T., Proctor, D. F. & Hogg, J. C. 1970 The stability of peripheral airways. Respir. Physiol. 8 (2), 191203.Google Scholar
Ozsun, O., Yakhot, V. & Ekinci, K. L. 2013 Non-invasive measurement of the pressure distribution in a deformable micro-channel. J. Fluid Mech. 734, R1.CrossRefGoogle Scholar
Park, C.-W. & Homsy, G. M. 1984 Two-phase displacement in Hele Shaw cells: theory. J. Fluid Mech. 139, 291308.Google Scholar
Perun, M. L. & Gaver, D. P. III 1995 Interaction between airway lining fluid forces and parenchymal tethering during pulmonary airway reopening. J. Appl. Phys. 79 (5), 17171728.Google ScholarPubMed
Pihler-Puzović, D., Illien, P., Heil, M. & Juel, A. 2012 Suppression of complex fingerlike patterns at the interface between air and a viscous fluid by elastic membranes. Phys. Rev. Lett. 108 (7), 074502.Google Scholar
Pihler-Puzović, D., Juel, A., Peng, G. G., Lister, J. R. & Heil, M. 2015 Displacement flows under elastic membranes. Part 1. Experiments and direct numerical simulations. J. Fluid Mech. 784, 487511.CrossRefGoogle Scholar
Pihler-Puzović, D., Périllat, R., Russell, M., Juel, A. & Heil, M. 2013 Modelling the suppression of viscous fingering in elastic-walled Hele-Shaw cells. J. Fluid Mech. 731, 162183.CrossRefGoogle Scholar
Pokroy, B., Kang, S. H., Mahadevan, L. & Aizenberg, J. 2009 Self-organization of a mesoscale bristle into ordered, hierarchical helical assemblies. Science 323 (5911), 237240.Google Scholar
Roman, B. & Bico, J. 2010 Elasto-capillarity: deforming an elastic structure with a liquid droplet. J. Phys.: Condens. Matter 22 (49), 493101.Google Scholar
Saffman, P. G. & Taylor, G. 1958 The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A 245 (1242), 312329.Google Scholar
Shapiro, A. H. 1977 Steady flow in collapsible tubes. Trans. ASME J. Biomech. Engng 99 (3), 126147.Google Scholar
Tabeling, P., Zocchi, G. & Libchaber, A. 1987 An experimental study of the Saffman–Taylor instability. J. Fluid Mech. 177, 6782.CrossRefGoogle Scholar
Thompson, A. B., Juel, A. & Hazel, A. L. 2014 Multiple finger propagation modes in Hele-Shaw channels of variable depth. J. Fluid Mech. 746, 123164.Google Scholar
Van Honschoten, J. W., Escalante, M., Tas, N. R., Jansen, H. V. & Elwenspoek, M. 2007 Elastocapillary filling of deformable nanochannels. J. Appl. Phys. 101 (9), 094310.CrossRefGoogle Scholar
Zhao, H., Casademunt, J., Yeung, C. & Maher, J. V. 1992 Perturbing Hele-Shaw flow with a small gap gradient. Phys. Rev. A 45, 24552460.Google Scholar
Zheng, Y., Fujioka, H., Bian, S., Torisawa, Y., Huh, D., Takayama, S. & Grotberg, J. B. 2009 Liquid plug propagation in flexible microchannels: a small airway model. Phys. Fluids 21 (7), 071903.CrossRefGoogle ScholarPubMed