Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-20T14:28:53.223Z Has data issue: false hasContentIssue false

Rapid distortion of axisymmetric turbulence

Published online by Cambridge University Press:  12 April 2006

K. R. Sreenivasan
Affiliation:
Indian Institute of Science, Bangalore 560 012 Present address: Department of Mechanical Engineering, University of Newcastle, New South Wales, Australia 2308.
R. Narasimha
Affiliation:
Indian Institute of Science, Bangalore 560 012

Abstract

A generalization of the isotropic theory of Batchelor & Proudman (1954) is developed to estimate the effect of sudden but arbitrary three-dimensional distortion on homogeneous, initially axisymmetric turbulence. The energy changes due to distortion are expressed in terms of the Fourier coefficients of an expansion in zonal harmonics of the two independent scalar functions that describe the axisymmetric spectral tensor. However, for two special but non-trivial forms of this tensor, which represent possibly the simplest kinds of non-isotropic turbulence and specify the angular distribution but not the wavenumber dependence, the energy ratios have been determined in closed form. The deviation of the ratio from its isotropic value is the product of a factor containing R, the initial value of the ratio of the longitudinal to the transverse energy component, and another factor depending only on the geometry of the distortion. It is found that, in axisymmetric and large two-dimensional contractions, the isotropic theory gives nearly the correct longitudinal energy, but (when R > 1) over-estimates the increase in the transverse energy; the product of the two intensities varies little unless the distortion is very large, thus accounting for the stress-freezing observed in rapidly accelerated shear flows.

Comparisons with available experimental data for the spectra and for the energy ratios show reasonable agreement. The different ansatzes predict results in broad qualitative agreement with a simple strategem suggested by Reynolds & Tucker (1975), but the quantitative differences are not always negligible.

Type
Research Article
Copyright
© 1978 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acharya, Y. V. G. 1956 Proc. Indian Acad. Sci. 44, 63.
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.
Batchelor, G. K. & Proudman, I. 1954 Quart. J. Mech. Appl. Math. 7, 83.
Bearman, P. W. 1972 J. Fluid Mech. 53, 451.
Blackwelder, R. F. & Kovasznay, L. S. G. 1972 J. Fluid Mech. 53, 61.
Champagne, F. H., Harris, V. G. & Corrsin, S. 1970 J. Fluid Mech. 41, 81.
Chandrasekhar, S. 1950 Proc. Roy. Soc. A 203, 358.
Comte-Bellot, G. 1963 Ph.D. thesis, University of Grenoble. (English trans. by P. Bradshaw, 1969, Aero. Res. Counc. R. & M. no. 31609, FM4102.)
Comte-Bellot, G. & Corrsin, S. 1966 J. Fluid Mech. 25, 657.
Herring, J. R. 1974 Phys. Fluids 17, 859.
Hunt, J. C. R. 1973 J. Fluid Mech. 61, 625.
Hunt, J. C. R. & Mulhearn, P. J. 1973 J. Fluid Mech. 61, 245.
Klebanoff, P. 1954 N.A.C.A. Tech. Note no. 3178.
Klein, A. & Ramjee, V. 1973 Aero. Quart. 24, 34.
Laufer, J. 1954 N.A.G.A. Rep. no. 1174.
Launder, B. E. 1964 Gas Turbine Lab., M.I.T. Rep. no. 77.
Lawn, C. J. 1971 J. Fluid Mech. 48, 477.
Narasimha, R. & Prabhu, A. 1972 J. Fluid Mech. 54, 1.
Narasimha, R. & Sreenivasan, K. R. 1973 J. Fluid Mech. 61, 417.
Prandtl, L. 1933 N.A.C.A. Tech. Memo. no. 726.
Perry, A. E. & Abell, C. J. 1975 J. Fluid Mech. 67, 157.
Ramjee, V., Badri narayanan, M. A. & Narasimha, R. 1972 Z. angew. Math. Phys. 23, 105.
Reynolds, A. J. & Tucker, H. J. 1975 J. Fluid Mech. 68, 673.
Ribner, H. S. & Tucker, M. 1953 N.A.C.A. Tech. Rep. no. 1113.
Sreenivasan, K. R. 1973 Curr. Sci. 42, 632.
Sreenivasan, K. R. 1974 Ph.D. thesis, Indian Institute of Science, Bangalore.
Sreenivasan, K. R. & Narasimha, R. 1974 Aero. Soc. India, Silver Jubilee Tech. Conf., Bangalore, paper 2.3.
Swamy, N. V. C. 1972 Indian Inst. Tech., Madras Tech. Note TN II-72.
Taylor, G. I. 1935 Z. angew. Math. Mech. 15, 91.
Townsend, A. A. 1954 Quart. J. Mech. Appl. Math. 7, 104.
Tucker, H. S. & Reynolds, A. J. 1968 J. Fluid Mech. 32, 657.
Uberoi, M. S. 1956 J. Aero. Sci. 23, 754.
Uberoi, M. S. & Wallis, S. 1966 J. Fluid Mech. 24, 539.