Published online by Cambridge University Press: 14 October 2021
This paper deals with perturbed unsteady laminar flows in a pipe. Three types of flows are considered: a flow accelerated from rest; a flow in a pipe generated by the controlled motion of a piston; and a water hammer flow where the transient is generated by the instantaneous closure of a valve. Methods of linear stability theory are used to analyse the behaviour of small perturbations in the flow. Since the base flow is unsteady, the linearized problem is formulated as an initial-value problem. This allows us to consider arbitrary initial conditions and describe both short-time and long-time evolution of the flow. The role of initial conditions on short-time transients is investigated. It is shown that the phenomenon of transient growth is not associated with a certain type of initial conditions. Perturbation dynamics is also studied for long times. In addition, optimal perturbations, i.e. initial perturbations that maximize the energy growth, are determined for all three types of flow discussed. Despite the fact that these optimal perturbations, most probably, will not occur in practice, they do provide an upper bound for energy growth and can be used as a point of reference. Results of numerical simulation are compared with previous experimental data. The comparison with data for accelerated flows shows that the instability cannot be explained by long-time asymptotics. In particular, the method of normal modes applied with the quasi-steady assumption will fail to predict the flow instability. In contrast, the transient growth mechanism may be used to explain transition since experimental transition time is found to be in the interval where the energy of perturbation experiences substantial growth. Instability of rapidly decelerated flows is found to be associated with asymptotic growth mechanism. Energy growth of perturbations is used in an attempt to explain previous experimental results. Numerical results show satisfactory agreement with the experimental features such as the wavelength of the most unstable mode and the structure of the most unstable disturbance. The validity of the quasi-steady assumption for stability studies of unsteady non-periodic laminar flows is discussed.