Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-19T07:54:10.622Z Has data issue: false hasContentIssue false

Patterns and quasi-patterns in the Faraday experiment

Published online by Cambridge University Press:  26 April 2006

W. S. Edwards
Affiliation:
Department of Physics, Haverford College, Haverford, PA 19041, USA
S. Fauve
Affiliation:
Laboratoire de Physique, Ecole Normalie Supérieure de Lyon, 46, allée d'Italie, 69364 Lyon Cedex 07, France

Abstract

Parametric excitation of surface waves via forced vertical oscillation of a container filled with fluid (the Faraday instability) is investigated experimentally in a small-depth large-aspect-ratio system, with a viscous fluid and with two simultaneous forcing frequencies. The asymptotic pattern observed just above the threshold for the first instability of the flat surface is found to depend strongly on the frequency ratio and the amplitudes and phases of the two sinusoidal components of the driving acceleration. Parallel lines, squares, and hexagons are observed. With viscosity 100 cS, these stable standing-wave patterns do not exhibit strong sidewall effects, and are found in containers of various shapes including an irregular shape. A ‘quasi-pattern’ of twelvefold symmetry, analogous to a two-dimensional quasi-crystal, is observed for some even/odd frequency ratios. Many of the experimental phenomena can be modelled via cubic-order amplitude equations derived from symmetry arguments.

Type
Research Article
Copyright
© 1994 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benjamin, T. B. & Scott, C. 1979 J. Fluid Mech. 2, 241.
Benjamin, T. B. & Ursell, F. 1954 Proc. R. Soc. Lond. A 255, 505.
Bodenschatz, E., Bruyn, J. R. De, Ahlers, G. & Cannell, D. S. 1991 Phys. Rev. Lett. 67, 3078.
Christiansen, B., Alstrom, P. & Levinsen, M. T. 1992 Phys. Rev. Lett. 68, 2157.
Ciliberto, S., Coullet, P., Lega, J., Pampaloni, E. & Perez-Garcia, C. 1990 Phys. Rev. Lett. 65, 2370.
Croquette, V. 1989a Contemp. Phys. 30, 113.
Croquette, V. 1989b Contemp. Phys. 30, 153.
Cross, M. C. & Hohenberg, P. C. 1993 Rev. Modern Phys. 65, 851.
Douady, S. 1989 PhD thesis, Université de Paris VI.
Douady, S. 1990 J. Fluid Mech. 221, 383.
Douady, S. & Fauve, S. 1988 Europhys. Lett. 6, 221.
Edwards, W. S. & Fauve, S. 1992 C. R. Acad. Sci. Paris 315(II), 417.
Edwards, W. S. & Fauve, S. 1993 Phys. Rev. E47, R788.
Ezerskii, A. B., Rabinovich, M. I., Reutov, V. P. & Starobinets, I. M. 1986 Zh. Eksp. Teor. Fiz. 91, 2070 (Sov. Phys. JETP 64, 1228).
Faraday, M. 1831 Phil. Trans. R. Soc. Lond. 52, 319.
Fauve, S., Kumar, K., Laroche, C., Beysens, D. & Garrabos, Y. 1992 Phys. Rev. Lett. 68, 3160.
Gluckman, B. J., Marcq, P., Bridger, J. & Gollub, J. P. 1993 Phys. Rev. Lett. 71, 2034.
Golubitsky, M., Swift, J. W. & Knobloch, E. 1984 Physica 10D, 249.
Kumar, K. & Tuckerman, L. S. 1994 Parametric instability at the interface of two fluids. J. Fluid Mech. 279, 4968.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1976 Course of Theoretical Physics; Vol. 1, Mechanics, 3rd edn. Pergammon.
Landau, L. D. & Lifshitz, E. M. 1987 Course of Theoretical Physics; Vol. 2, Fluid Mechanics, 2nd edn. Pergammon.
Malomed, B. A., Nepomnyashch A. A. & Tribelski, M. I. 1989 Sov. Phys. JETP 69, 388.
Mermin, N. D. & Troian, S. M. 1985 Phys. Rev. Lett. 54, 1524.
Miles, J. 1993 J. Fluid Mech. 248, 671.
Milner, J. 1991 J. Fluid Mech. 225, 81.
Müller, H. W. 1993a Phys. Rev. E 49, 1273.
Müller, H. W. 1993b Phys. Rev. Lett. 71, 3287.
Newell, A. C., Passot, T. & Lega, J. 1993 Ann. Rev. Fluid Mech. 25, 399.
Newell, A. C. & Pomeau, Y. 1993 J. Phys. A 26, L429.
Palm, E. 1960 J. Fluid Mech. 8, 183.
Pampaloni, E., Perez-Garcia, C., Albavetti, L. & Ciliberto, S. 1992 J. Fluid Mech. 234, 393.
Tuckerman, L. S., Kumar, K. & Edwards, W. S. 1994 in preparation.
Tufillaro, N. B., Ramshankar, R. & Gollub, J. P. 1989 Phys. Rev. Lett. 62, 422.
Zippelius, A. & Siggia, E. D. 1983 Phys. Fluids 26, 2905.