Published online by Cambridge University Press: 26 April 2006
There has been some debate recently on whether the far-wake structure downstream of a cylinder is dependent on, or ‘connected’ with, the precise details of the near-wake structure. Indeed, it has previously been suggested that the far-wake scale and frequency are unconnected with those of the near wake. In the present paper, we demonstrate that both the far-wake scale and frequency are dependent on the near wake. Surprisingly, the characteristic that actually forges a ‘connection’ between the near and far wakes is the sensitivity to free-stream disturbances. It is these disturbances that are also responsible for the regular three-dimensional patterns that may be visualized. Observations of a regular ‘honeycomb’-like three-dimensional pattern in the far wake is found to be caused by an interaction between oblique shedding waves from upstream and large-scale two-dimensional waves, amplified from the free-stream disturbances. The symmetry and spanwise wavelength of Cimbala, Nagib & Roshko's (1988) three-dimensional pattern are precisely consistent with such wave interactions. In the presence of parallel shedding, the lack of a honeycomb pattern shows that such a three-dimensional pattern is clearly dependent on upstream oblique vortex shedding.
With the deductions above as a starting point, we describe a new mechanism for the resonance of oblique waves, as follows. In the case of two-dimensional waves, corresponding to a very small spectral peak in the free stream (fT) interacting (quadratically) with the oblique shedding waves frequency (fK), it appears that the most amplified or resonant frequency in the far wake is a combination frequency fFW = (fK–fT), which corresponds physically with ‘oblique resonance waves’ at a large oblique angle. The large scatter in (fFW/fK) from previous studies is principally caused by the broad response of the far wake to a range of free-stream spectral peaks (fT). We present clear visualization of the oblique wave phenomenon, coupled with velocity measurements which demonstrate that the secondary oblique wave energy can far exceed the secondary two-dimensional wave energy by up to two orders of magnitude. Further experiments show that, in the absence of an influential free-stream spectral peak, the far wake does not resonate, but instead has a low-amplitude broad spectral response. The present phenomena are due to nonlinear instabilities in the far wake, and are not related to vortex pairing. There would appear to be distinct differences between this oblique wave resonance and the subharmonic resonances that have been previously studied in channel flow, boundary layers, mixing layers and airfoil wakes.