Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-19T12:28:05.708Z Has data issue: false hasContentIssue false

Motion of Newtonian drops deposited on liquid-impregnated surfaces induced by vertical vibrations

Published online by Cambridge University Press:  07 August 2019

Paolo Sartori
Affiliation:
Dipartimento di Fisica e Astronomia ‘G. Galilei’, Università di Padova, via Marzolo 8, 35131 Padova, Italy
Elia Guglielmin
Affiliation:
Dipartimento di Fisica e Astronomia ‘G. Galilei’, Università di Padova, via Marzolo 8, 35131 Padova, Italy
Davide Ferraro
Affiliation:
Dipartimento di Fisica e Astronomia ‘G. Galilei’, Università di Padova, via Marzolo 8, 35131 Padova, Italy
Daniele Filippi
Affiliation:
Dipartimento di Fisica e Astronomia ‘G. Galilei’, Università di Padova, via Marzolo 8, 35131 Padova, Italy
Annamaria Zaltron
Affiliation:
Dipartimento di Fisica e Astronomia ‘G. Galilei’, Università di Padova, via Marzolo 8, 35131 Padova, Italy
Matteo Pierno
Affiliation:
Dipartimento di Fisica e Astronomia ‘G. Galilei’, Università di Padova, via Marzolo 8, 35131 Padova, Italy
Giampaolo Mistura*
Affiliation:
Dipartimento di Fisica e Astronomia ‘G. Galilei’, Università di Padova, via Marzolo 8, 35131 Padova, Italy
*
Email address for correspondence: [email protected]

Abstract

We have studied the motion of drops on inclined liquid-impregnated surfaces (LISs) subject to vertical vibrations. The liquid drops comprise distilled water and different aqueous solutions of glycerol of increasing viscosity. The use of weak pinning LISs strongly affects the dynamical phase diagram. First of all, there is no trace of the dominant static region at low oscillating amplitudes reported for oscillating solid surfaces characterized by contact angle hysteresis. On the contrary, at sufficiently low oscillating amplitudes, the drops always move downwards with a velocity that depends only on the drop viscosity. Further increasing the oscillating amplitude may drive the drop upwards against gravity, as reported for dry surfaces. The use of more viscous drops widens this climbing region. Arguably, the main novelty of this work concerns the observation of two distinct descending regimes where the downhill speed differs by a factor of five or more. Fast-rate videos show that the evolution of the drop profile is diverse in the two regimes, likely because the vertical oscillations reduce the effect of the oil meniscus surrounding the drop at high accelerations.

Type
JFM Rapids
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banerjee, S., Dionysiou, D. D. & Pillai, S. C. 2015 Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Applied Catal. B 176, 396428.Google Scholar
Benilov, E. S. & Billingham, J. 2011 Drops climbing uphill on an oscillating substrate. J. Fluid Mech. 674, 93119.Google Scholar
Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading. Rev. Mod. Phys. 81 (2), 739805.Google Scholar
Bradshaw, J. & Billingham, J. 2016 Thin three-dimensional droplets on an oscillating substrate with contact angle hysteresis. Phys. Rev. E 93 (1), 013123.Google Scholar
Bradshaw, J. T. & Billingham, J. 2018 Thick drops climbing uphill on an oscillating substrate. J. Fluid Mech. 840, 131153.Google Scholar
Brunet, P., Eggers, J. & Deegan, R. D. 2007 Vibration-induced climbing of drops. Phys. Rev. Lett. 99 (14), 144501.Google Scholar
Brunet, P., Eggers, J. & Deegan, R. D. 2009 Motion of a drop driven by substrate vibrations. Eur. Phys. J. Special Topics 166 (1), 1114.Google Scholar
Daniel, S. & Chaudhury, M. K. 2002 Rectified motion of liquid drops on gradient surfaces induced by vibration. Langmuir 18 (9), 34043407.Google Scholar
Daniel, S., Sircar, S., Gliem, J. & Chaudhury, M. K. 2004 Ratcheting motion of liquid drops on gradient surfaces. Langmuir 20 (10), 40854092.Google Scholar
Darhuber, A. A., Valentino, J. P., Troian, S. M. & Wagner, S. 2003 Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays. J. Microelectromech. Syst. 12 (6), 873879.Google Scholar
Dattilo, D., Armelao, L., Fois, G., Mistura, G. & Maggini, M. 2007 Wetting properties of flat and porous silicon surfaces coated with a spiropyran. Langmuir 23 (26), 1294512950.Google Scholar
Ding, H., Zhu, X., Gao, P. & Lu, X. Y. 2018 Ratchet mechanism of drops climbing a vibrated oblique plate. J. Fluid Mech. 835, R1.Google Scholar
Dong, L., Chaudhury, A. & Chaudhury, M. K. 2006 Lateral vibration of a water drop and its motion on a vibrating surface. Eur. Phys. J. E 21 (3), 231242.Google Scholar
Glycerine Producers’ Association1963 Physical properties of glycerine and its solutions. Available at: http://www.aciscience.org/docs/physical_properties_of_glycerine_and_its_solutions.pdf).Google Scholar
John, K. & Thiele, U. 2010 Self-ratcheting Stokes drops driven by oblique vibrations. Phys. Rev. Lett. 104 (10), 107801.Google Scholar
Keiser, A., Keiser, L., Clanet, C. & Quéré, D. 2017 Drop friction on liquid-infused materials. Soft Matt. 13 (39), 69816987.Google Scholar
Lafuma, A. & Quéré, D. 2011 Slippery pre-suffused surfaces. Europhys. Lett. 96 (5), 56001.Google Scholar
Latikka, M., Backholm, M., Timonen, J. V. I. & Ras, R. N. A. 2018 Wetting of ferrofluids: phenomena and control. Curr. Opin. Colloid Interface Sci. 36, 118129.Google Scholar
Lin, C. S., Chen, S., Xiao, L. L. & Liu, Y. 2018 Tuning drop motion by chemical chessboard-patterned surfaces: a many-body dissipative particle dynamics study. Langmuir 34 (8), 27082715.Google Scholar
Liu, Q. C. & Xu, B. X. 2015 Actuating water droplets on graphene via surface wettability gradients. Langmuir 31 (33), 90709075.Google Scholar
Mistura, G. & Pierno, M. 2017 Drop mobility on chemically heterogeneous and lubricant-impregnated surfaces. Adv. Phys. 2 (3), 591607.Google Scholar
Mugele, F. & Baret, J. C. 2005 Electrowetting: from basics to applications. J. Phys.: Condens. Matter 17 (28), R705R774.Google Scholar
Nakajima, A., Nakagawa, Y., Furuta, T., Sakai, M., Isobe, T. & Matsushita, S. 2013 Sliding of water droplets on smooth hydrophobic silane coatings with regular triangle hydrophilic regions. Langmuir 29 (29), 92699275.Google Scholar
Noblin, X., Kofman, R. & Celestini, F. 2009 Ratchetlike motion of a shaken drop. Phys. Rev. Lett. 102 (19), 194504.Google Scholar
Rigoni, C., Ferraro, D., Carlassara, M., Filippi, D., Varagnolo, S., Pierno, M., Talbot, D., Abou-Hassan, A. & Mistura, G. 2018 Dynamics of ferrofluid drops on magnetically patterned surfaces. Langmuir 34 (30), 89178922.Google Scholar
Sartori, P., Bonato, L., Delfitto, G., Pierno, M., Mistura, G., Semprebon, C. & Brinkmann, M. 2018 Morphological transitions of water channels induced by vertical vibrations. Langmuir 34 (43), 1288212888.Google Scholar
Sartori, P., Quagliati, D., Varagnolo, S., Pierno, M., Mistura, G., Magaletti, F. & Casciola, C. M. 2015 Drop motion induced by vertical vibrations. New J. Phys. 17, 15.Google Scholar
Savva, N. & Kalliadasis, S. 2013 Droplet motion on inclined heterogeneous substrates. J. Fluid Mech. 725, 462491.Google Scholar
Savva, N. & Kalliadasis, S. 2014 Low-frequency vibrations of two-dimensional droplets on heterogeneous substrates. J. Fluid Mech. 754, 515549.Google Scholar
Sbragaglia, M., Biferale, L., Amati, G., Varagnolo, S., Ferraro, D., Mistura, G. & Pierno, M. 2014 Sliding drops across alternating hydrophobic and hydrophilic stripes. Phys. Rev. E 89 (1), 012406.Google Scholar
Schellenberger, F., Xie, J., Encinas, N., Hardy, A., Klapper, M., Papadopoulos, P., Butt, H.-J. & Vollmer, D. 2015 Direct observation of drops on slippery lubricant-infused surfaces. Soft Matt. 11 (38), 76177626.Google Scholar
Semprebon, C., Varagnolo, S., Filippi, D., Perlini, L., Pierno, M., Brinkmann, M. & Mistura, G. 2016 Deviation of sliding drops at a chemical step. Soft Matt. 12 (40), 82688273.Google Scholar
Smith, J. D., Dhiman, R., Anand, S., Reza-Garduno, E., Cohen, R. E., McKinley, G. H. & Varanasi, K. K. 2013 Droplet mobility on lubricant-impregnated surfaces. Soft Matt. 9 (6), 17721780.Google Scholar
Suzuki, S., Nakajima, A., Tanaka, K., Sakai, M., Hashimoto, A., Yoshida, N., Kameshima, Y. & Okada, K. 2008 Sliding behavior of water droplets on line-patterned hydrophobic surfaces. Appl. Surf. Sci. 254 (6), 17971805.Google Scholar
Tóth, T., Ferraro, D., Chiarello, E., Pierno, M., Mistura, G., Bissacco, G. & Semprebon, C. 2011 Suspension of water droplets on individual pillars. Langmuir 27 (8), 47424748.Google Scholar
Varagnolo, S., Ferraro, D., Fantinel, P., Pierno, M., Mistura, G., Amati, G., Biferale, L. & Sbragaglia, M. 2013 Stick-slip sliding of water drops on chemically heterogeneous surfaces. Phys. Rev. Lett. 111 (6), 066101.Google Scholar
Varagnolo, S., Schiocchet, V., Ferraro, D., Pierno, M., Mistura, G., Sbragaglia, M., Gupta, A. & Amati, G. 2014 Tuning drop motion by chemical patterning of surfaces. Langmuir 30 (9), 24012409.Google Scholar
Wong, T. S., Kang, S. H., Tang, S. K. Y., Smythe, E. J., Hatton, B. D., Grinthal, A. & Aizenberg, J. 2011 Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477 (7365), 443447.Google Scholar
Yeo, L. Y. & Friend, J. R. 2014 Surface acoustic wave microfluidics. Annu. Rev. Fluid Mech. 46, 379406.Google Scholar
Zhao, J. Y., Chen, S. & Liu, Y. 2016 Droplets motion on chemically/topographically heterogeneous surfaces. Mol. Simul. 42 (17), 14521459.Google Scholar
Zhao, J. Y., Chen, S. & Liu, Y. 2017 Dynamical behaviors of droplet impingement and spreading on chemically heterogeneous surfaces. Appl. Surf. Sci. 400, 515523.Google Scholar

Sartori et al. supplementary movie 1

Real time videos of descending (top), climbing (middle) and fast descending (bottom) drops with average velocities ≈ 1 mm/s, 4 mm/s and ≈ 18 mm/s, respectively. Frequency and acceleration are 145 Hz and 40 m/s2, 125 Hz and 135 m/s2 and 145 Hz and 230 m/s2, respectively. The angle between the direction of the gravitational acceleration g and that of the oscillating surface is 45°. Drops have a volume Ω=1 μL.

Download Sartori et al. supplementary movie 1(Video)
Video 1.2 MB

Sartori et al. supplementary movie 2

Succession of slow motion videos reporting descending (f = 125 Hz, a = 105 m/s2), climbing (f = 125 Hz, a = 150 m/s2) and fast descending (f = 125 Hz, a = 190 m/s2) drops with Ω=1 μL, acquired at 3000 fps.

Download Sartori et al. supplementary movie 2(Video)
Video 13.2 MB