Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-02T21:37:22.297Z Has data issue: false hasContentIssue false

Moist multi-scale models for the hurricane embryo

Published online by Cambridge University Press:  30 June 2010

ANDREW J. MAJDA*
Affiliation:
Department of Mathematics and Climate, Atmosphere and Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
YULONG XING
Affiliation:
Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA
MAJID MOHAMMADIAN
Affiliation:
Department of Civil Engineering, University of Ottawa, Ontario, CanadaK1N 6N5
*
Email address for correspondence: [email protected]

Abstract

Determining the finite-amplitude preconditioned states in the hurricane embryo, which lead to tropical cyclogenesis, is a central issue in contemporary meteorology. In the embryo there is competition between different preconditioning mechanisms involving hydrodynamics and moist thermodynamics, which can lead to cyclogenesis. Here systematic asymptotic methods from applied mathematics are utilized to develop new simplified moist multi-scale models starting from the moist anelastic equations. Three interesting multi-scale models emerge in the analysis. The balanced mesoscale vortex (BMV) dynamics and the microscale balanced hot tower (BHT) dynamics involve simplified balanced equations without gravity waves for vertical vorticity amplification due to moist heat sources and incorporate nonlinear advective fluxes across scales. The BMV model is the central one for tropical cyclogenesis in the embryo. The moist mesoscale wave (MMW) dynamics involves simplified equations for mesoscale moisture fluctuations, as well as linear hydrostatic waves driven by heat sources from moisture and eddy flux divergences. A simplified cloud physics model for deep convection is introduced here and used to study moist axisymmetric plumes in the BHT model. A simple application in periodic geometry involving the effects of mesoscale vertical shear and moist microscale hot towers on vortex amplification is developed here to illustrate features of the coupled multi-scale models. These results illustrate the use of these models in isolating key mechanisms in the embryo in a simplified content.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Biello, J. A. & Majda, A. J. 2005 A new multiscale model for the Madden–Julian oscillation. J. Atmos. Sci. 62, 16941721.CrossRefGoogle Scholar
Biello, J. A. & Majda, A. J. 2006 Modulating synoptic scale convective activity and boundary layer dissipation in the IPESD models of the Madden–Julian oscillation. Dyn. Atmos. Oceans 42, 152215.CrossRefGoogle Scholar
Biello, J. A. & Majda, A. J. 2009 Intraseasonal multi-scale moist dynamics of the tropical troposphere. Commun. Math. Sci. 8, 519540.CrossRefGoogle Scholar
Biello, J. A., Majda, A. J. & Moncrieff, M. W. 2007 Meridional momentum flux and superrotation in the multi-scale IPESD MJO model. J. Atmos. Sci. 64, 16361651.CrossRefGoogle Scholar
Dunkerton, T. J., Montgomery, M. T. & Wang, Z. 2008 Tropical cyclogenesis in a tropical wave critical layer: easterly waves. Atmos. Chem. Phys. Discuss. 8, 1114911292.Google Scholar
Emanuel, K. A. 1989 The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci. 46, 34313456.2.0.CO;2>CrossRefGoogle Scholar
Emanuel, K. A. 1994 Atmospheric Convection. Oxford University Press.CrossRefGoogle Scholar
Frank, W. M. & Roundy, P. E. 2006 The role of tropical waves in tropical cyclogenesis. Mon. Wea. Rev. 134, 23972417.CrossRefGoogle Scholar
Grabowski, W. W. 2001 Coupling cloud processes with the large-scale dynamics using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci. 58, 978997.2.0.CO;2>CrossRefGoogle Scholar
Grabowski, W. W. 2004 An improved framework for superparameterization. J. Atmos. Sci. 61, 19401952.2.0.CO;2>CrossRefGoogle Scholar
Grabowski, W. W. & Smolarkiewicz, P. K. 1996 Two-time-level semi-Lagrangian modeling of precipitating clouds. Mon. Weather Rev. 124, 487497.2.0.CO;2>CrossRefGoogle Scholar
Hendricks, E. A., Montgomery, M. T. & Davis, C. A. 2004 The role of “vortical” hot towers in the formation of tropical cyclone Diana (1984). J. Atmos. Sci. 61, 12091232.2.0.CO;2>CrossRefGoogle Scholar
Klein, R. 2000 Asymptotic analyses for atmospheric flows and the construction of asymptotically adaptive numerical methods. Z. Angew. Math. Mech. 80, 765777.3.0.CO;2-1>CrossRefGoogle Scholar
Klein, R. & Majda, A. J. 2006 Systematic multiscale models for deep convection on mesoscales. Theor. Comput. Fluid Dyn. 20, 525551.CrossRefGoogle Scholar
Lipps, F. B. & Hemler, R. S. 1982 A scale analysis of deep moist convection and some related numerical calculations. J. Atmos. Sci. 39, 21922210.2.0.CO;2>CrossRefGoogle Scholar
Majda, A. J. 2003 Introduction to PDEs and Waves for the Atmosphere and Ocean. Courant Lecture Notes in Mathematics, vol. 9. American Mathematical Society.CrossRefGoogle Scholar
Majda, A. J. 2007 a Multiscale models with moisture and systematic strategies for superparameterization. J. Atmos. Sci. 64, 27262734.CrossRefGoogle Scholar
Majda, A. J. 2007 b New multiscale models and self-similarity in tropical convection. J. Atmos. Sci. 64, 13931404.CrossRefGoogle Scholar
Majda, A. J. & Biello, J. A. 2004 A multiscale model for tropical intraseasonal oscillation. Proc. Natl Acad. Sci. USA 101, 47364741.CrossRefGoogle Scholar
Majda, A. J. & Klein, R. 2003 Systematic multiscale models for the tropics. J. Atmos. Sci. 60, 393408.2.0.CO;2>CrossRefGoogle Scholar
Majda, A. J., Mohammadian, M. & Xing, Y. 2008 Vertically sheared horizontal flow with mass sources: a canonical balanced model. Geophys. Astrophys. Fluid Dyn. 102, 543591.CrossRefGoogle Scholar
Majda, A. J. & Stechmann, S. 2009 A simple dynamic model with features of convective momentum transport. J. Atmos. Sci. 66, 373392.CrossRefGoogle Scholar
Majda, A. J. & Xing, Y. 2009 New multi-scale models on mesoscales and squall lines. Commun. Math. Sci. 8, 113134.CrossRefGoogle Scholar
Mohammadian, A. M. & LeRoux, D. Y. 2008 Fourier analysis of a class of upwind schemes in shallow water systems for gravity and Rossby waves. Intl J. Numer. Methods Fluids 57, 389416.CrossRefGoogle Scholar
Molinari, J., Lombardo, K. & Vollaro, D. 2007 Tropical cyclogenesis within an equatorial Rossby wave packet. J. Atmos. Sci. 64, 13011317.CrossRefGoogle Scholar
Molinari, J., Vollaro, D. & Corbosiero, K. L. 2004 Tropical cyclone formation in a sheared environment: a case study. J. Atmos. Sci. 61, 24932509.CrossRefGoogle Scholar
Montgomery, M. T., Nicholls, M. E., Cram, T. A. & Saunders, A. B. 2006 A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci. 63, 355386.CrossRefGoogle Scholar
Nolan, D. S. 2007 What is the trigger for tropical cyclogenesis? Aust. Meteorol. Mag. 56, 241266.Google Scholar
Ritchie, E. A. & Holland, G. J. 1997 Scale interactions during the formation of Typhoon Irving. Mon. Weather Rev. 125, 13771396.2.0.CO;2>CrossRefGoogle Scholar
Sobel, A. H., Nilsson, J. & Polvani, L. M. 2001 The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci. 58, 36503665.2.0.CO;2>CrossRefGoogle Scholar
Xing, Y., Majda, A. J. & Grabowski, W. W. 2009 New efficient sparse space-time algorithms for superparameterization on mesoscales. Mon. Weather Rev. 137, 43074324.CrossRefGoogle Scholar
Zhang, D.-L. & Bao, N. 1996 Oceanic cyclogenesis as induced by a mesoscale convective system moving offshore. Part II. Genesis and thermodynamic transformation. Mon. Weather Rev. 124, 22062225.2.0.CO;2>CrossRefGoogle Scholar