Published online by Cambridge University Press: 10 May 2009
This paper deals with the definition and description of optimal streaky (S) perturbations in a Blasius boundary layer. First, the asymptotic behaviours of S-perturbations near the free stream and the leading edge are studied to conclude that the former is slaved to the solution inside the boundary layer. Based on these results, a quite precise numerical scheme is constructed that allows concluding that S-perturbations produced inside the boundary layer, near the leading edge, can be defined in terms of just one streamwise-evolving solution of the linearized equations, associated with the first eigenmode of an eigenvalue problem first formulated by Luchini (J. Fluid Mech., vol. 327, 1996, p. 101). Such solution may be seen as an internal unstable streaky mode of the boundary layer, similar to eigenmodes of linearized stability problems. The remaining modes decay streamwise. Thus, the definition of streaks in terms of an optimization problem that is used nowadays is not necessary.