Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T02:59:46.285Z Has data issue: false hasContentIssue false

Microstructure and rheology relationships for shear thickening colloidal dispersions

Published online by Cambridge University Press:  16 March 2015

A. Kate Gurnon
Affiliation:
Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
Norman J. Wagner*
Affiliation:
Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
*
Email address for correspondence: [email protected]

Abstract

The non-Newtonian shear rheology of colloidal dispersions is the result of the competition and balance between hydrodynamic (dissipative) and thermodynamic (conservative) forces that lead to a non-equilibrium microstructure under flow. We present the first experimental measurements of the shear-induced microstructure of a concentrated near-hard-sphere colloidal dispersion through the shear thickening transition using small-angle neutron scattering (SANS) measurements made in three orthogonal planes during steady shear. New instrumentation coupled with theoretical derivations of the stress-SANS rule enable rigorous testing of the relationship between this non-equilibrium microstructure and the observed macroscopic shear rheology. The thermodynamic and hydrodynamic components of the stress that drive shear thinning, shear thickening and first normal stress differences are separately defined via stress-SANS rules and compared to the rheological behaviour of the dispersion during steady shear. Observations of shear-induced hydrocluster formation is in good agreement with Stokesian dynamics simulation results by Foss & Brady (J. Fluid Mech., vol. 407, 2000, pp. 167–200). This unique set of measurements of shear rheology and non-equilibrium microstructure of a model system provides new insights into suspension mechanics as well as a method to rigorously test constitutive equations for colloidal suspension rheology.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerson, B. J., Hayter, J. B., Clark, N. A. & Cotter, L. 1986 Neutron scattering from charge stabilized suspensions undergoing shear. J. Chem. Phys. 84 (1), 23442349.Google Scholar
Banchio, A. J. & Brady, J. F. 2003 Accelerated Stokesian dynamics: Brownian motion. J. Chem. Phys. 118 (22), 1032310332.Google Scholar
Barnes, H. A. 1989 Shear-thickening (‘dilatancy’) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids. J. Rheol. 33, 329366.CrossRefGoogle Scholar
Batchelor, G. K. 1977 Effect of Brownian motion on bulk stress in a suspension of spherical particles. J. Fluid Mech. 83, 97117.CrossRefGoogle Scholar
Batchelor, G. K. & Green, J. T. 1972 The determination of the bulk stress in a suspension of spherical particles to order $c^{2}$ . J. Fluid Mech. 56, 401427.CrossRefGoogle Scholar
Bender, J. W. & Wagner, N. J. 1995 Optical measurement of the contributions of colloidal forces to the rheology of concentrated suspensions. J. Colloid Interface Sci. 172 (1), 171184.Google Scholar
Bender, J. & Wagner, N. J. 1996 Reversible shear thickening in monodisperse and bidisperse colloidal dispersions. J. Rheol. 40 (5), 899916.CrossRefGoogle Scholar
Bergenholtz, J., Brady, J. F. & Vicic, M. 2002 The non-Newtonian rheology of dilute colloidal suspensions. J. Fluid Mech. 456, 239275.CrossRefGoogle Scholar
Besseling, R., Isa, L., Weeks, E. R. & Poon, W. C. K. 2009 Quantitative imaging of colloidal flows. Adv. Colloid Interface Sci. 146 (1), 117.CrossRefGoogle ScholarPubMed
Bian, X., Litvinov, S., Ellero, M. & Wagner, N. J. 2014 Hydrodynamic shear thickening of particulate suspension under confinement. J. Non-Newtonian Fluid Mech. 213, 3949.Google Scholar
Bossis, G. & Brady, J. F. 1989 The rheology of Brownian suspensions. J. Chem. Phys. 91 (3), 18661874.Google Scholar
Brady, J. F. & Bossis, G. 1985 The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation. J. Fluid Mech. 155, 105129.Google Scholar
Brady, J. F. & Bossis, G. 1988 Stokesian dynamics. Annu. Rev. Fluid Mech. 20, 111157.CrossRefGoogle Scholar
Brady, J. F. & Vicic, M. 1995 Normal stresses in colloidal dispersions. J. Rheol. 39 (3), 545566.CrossRefGoogle Scholar
Brown, E. & Jaeger, H. M. 2009 Dynamic jamming point for shear thickening suspensions. Phys. Rev. Lett. 108 (8), 86001.Google Scholar
Cates, M. E. & Wyart, M. 2014 Granulation and bistability in non-Brownian suspensions. Rheol. Acta 53 (10), 755764.Google Scholar
Cheng, X., McCoy, J. H., Israelachvili, J. N. & Cohen, I. 2011a Imaging the microscopic structure of shear thinning and thickening colloidal suspensions. Science 333, 12761279.CrossRefGoogle ScholarPubMed
Cheng, X., Xu, X., Rice, S. A., Dinner, A. R. & Cohen, I. 2011b Assembly of vorticity-aligned hard-sphere colloidal strings in a simple shear flow. Proc. Natl Acad. Sci. USA 109 (1), 6367.CrossRefGoogle Scholar
Cohen, I., Mason, T. G. & Weitz, D. A. 2004 Shear-induced configurations of confined colloidal suspensions. Phys. Rev. Lett. 93 (4), 046001.CrossRefGoogle ScholarPubMed
Crawford, N. C., Williams, S. K. R., Boldridge, D. & Liberatore, M. W. 2013 Shear-induced structures and thickening in fumed silica slurries. Langmuir 29 (42), 1291512923.CrossRefGoogle ScholarPubMed
Cwalina, C. D. & Wagner, N. J. 2014 Material properties of the shear-thickened state in concentrated near hard-sphere colloidal dispersions. J. Rheol. 58 (4), 949967.Google Scholar
David, N. V., Gao, X.-L. & Zheng, J. Q. 2009 Ballistic resistant body armor contemporary and prospective materials and related protection mechanisms. Appl. Mech. Rev. 62, 050802.Google Scholar
Dewhurst, C.2011 GRASP (program for MATLAB). Institut Laue-Langevin, Grenoble, France.Google Scholar
D’Haene, P., Mewis, J. & Fuller, G. G. 1993 Scattering dichroism measurements of flow-induced structure of a shear thickening suspension. J. Colloid Interface Sci. 156 (2), 350358.CrossRefGoogle Scholar
Fischer, C., Plummer, C. J. G., Michaud, V., Bourban, P.-E. & Manson, J.-A. E. 2007 Pre- and post-transition behavior of shear-thickening fluids in oscillatory shear. Rheol. Acta 46, 10991108.Google Scholar
Foss, D. R. & Brady, J. F. 2000 Structure, diffusion and rheology of Brownian suspensions by Stokesian dynamics simulation. J. Fluid Mech. 407, 167200.Google Scholar
Gao, C., Kulkarni, S. D., Morris, J. F. & Gilchrist, J. F. 2010 Direct investigation of anisotropic suspension structure in pressure-driven flow. Phys. Rev. E 81, 041403.Google Scholar
Gurnon, A. K.2014 Nonlinear oscillatory rheology and structure of wormlike micellar solutions and colloidal suspensions. PhD thesis, University of Delaware.Google Scholar
Gurnon, A. K., Godfrin, P. D., Eberle, A. P. R., Butler, P. D. & Wagner, N. J. 2014 Measuring material microstructure under flow using 1–2 plane flow–small angle neutron scattering. J. Vis. Exp. 84, e51068.Google Scholar
Helber, R., Doncker, F. & Bung, R. 1990 Vibration attenuation by passive stiffness switching mounts. J. Sound Vib. 138 (1), 4757.Google Scholar
Henderson, S., Mitchell, S. & Bartlett, P. 2001 Direct measurement of colloidal friction coefficients. Phys. Rev. E 64, 061403.Google Scholar
Hoekstra, H., Mewis, J., Narayanan, T. & Vermant, J. 2005 Multi length scale analysis of the microstructure in sticky sphere dispersions during shear flow. Langmuir 21 (1), 1101711025.Google Scholar
Hoffman, R. L. 1974 Discontinuous and dilatant viscosity behavior in concentrated suspensions II. Theory and experimental tests. J. Colloid Interface Sci. 46, 491506.Google Scholar
Johnson, S. J., deKruif, C. G. & May, R. P. 1988 Structure factor distortion for hardsphere dispersions subjected to weak shear flow: small angle neutron scattering in the flow–vorticity plane. J. Chem. Phys. 89 (9), 59105921.Google Scholar
Kalman, D. P.2010 Microstructure and rheology of concentrated suspensions of near hard-sphere colloids. PhD thesis, University of Delaware.Google Scholar
Kalman, D. P., Merrill, R. L., Wagner, N. J. & Wetzel, E. D. 2009 Effect of particle hardness on the penetration behavior of fabrics intercalated with dry particles and concentrated particle–fluid suspensions. Appl. Mater. Interfaces 1 (11), 26022612.Google Scholar
Kalman, D. P. & Wagner, N. J. 2009 Microstructure of shear-thickening concentrated suspensions determined by flow–USANS. Rheol. Acta 48 (8), 897908.Google Scholar
Kappl, M., Heim, L., Ecke, S., Farshchi, M. & Butt, H.-J. 2006 Adhesion and friction of single micrometer-sized particles. In Detection, Adhesion and Removal (ed. Mittal, K. L.), Particles on Surfaces, vol. 9, pp. 199210. VSP BV.Google Scholar
Krishnamurthy, L. N., Wagner, N. J. & Mewis, J. 2005 Shear thickening in polymer stabilized colloidal dispersions. J. Rheol. 49 (6), 13471360.Google Scholar
deKruif, C. G., Van der Werff, J. C. & Johnson, S. J. 1990 Small-angle neutron-scattering of sheared concentrated dispersions – microstructure along principal flow axes. Phys. Fluids A 2 (9), 15451556.CrossRefGoogle Scholar
Laun, H. M., Bung, R., Hess, S., Loose, W., Hahn, K., Hadicke, E., Hingmann, R., Schmidt, F. & Lindner, P. 1992 Rheological and small-angle neutron scattering investigation of shear-induced particle structures of concentrated polymer dispersions submitted to plane Poiseuille and Couette flow. J. Rheol. 36 (4), 743787.CrossRefGoogle Scholar
Lee, M., Alcoutlabi, M., Magda, J. J., Dibble, C., Solomon, M. J., Shi, X. & McKenna, G. B. 2006 The effect of the shear-thickening transition of model colloidal spheres on the sign of $N_{1}$ and on the radial pressure profile in torsional shear flows. J. Rheol. 50 (3), 293311.CrossRefGoogle Scholar
Lee, Y. S. & Wagner, N. J. 2006 Rheological properties and small-angle neutron scattering of a shear thickening nanoparticle dispersion at high shear rates. Ind. Engng Chem. Res. 46 (1), 70157024.Google Scholar
Lee, Y. S., Wetzel, E. D. & Wagner, N. J. 2003 The ballistic impact characteristics of Kevlar woven fabrics impregnated with a colloidal shear thickening fluid. J. Mater. Sci. 38, 28252833.Google Scholar
Lim, A. S., Lopatnikov, S. L., Wagner, N. J. & Gillespie, J. W. 2010a An experimental investigation into the kinematics of a concentrated hard-sphere colloidal suspension during Hopkinson bar evaluation at high stresses. J. Non-Newtonian Fluid Mech. 165 (19–20), 13421350.Google Scholar
Lim, A. S., Lopatnikov, S. L., Wagner, N. J. & Gillespie, J. W. 2010b Investigating the transient response of a shear thickening fluid using the split Hopkinson pressure bar technique. Rheol. Acta 49 (8), 879890.CrossRefGoogle Scholar
Lim, A. S., Lopatnikoy, S. L., Wagner, N. J. & Gillespie, J. W. 2011 Phenomenological modeling of the response of a dense colloidal suspension under dynamic squeezing flow. J. Non-Newtonian Fluid Mech. 166 (12–13), 680688.Google Scholar
Maranzano, B. J.2001 Rheology and microstructure of concentrated near hard sphere colloidal dispersions at the shear thickening transition. PhD thesis, University of Delaware.Google Scholar
Maranzano, B. J. & Wagner, N. J. 2002 Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening transition. J. Phys. Chem. 117 (22), 1029110302.Google Scholar
Mari, R., Seto, R., Morris, J. F. & Denn, M. M. 2014 Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions. J. Rheol. 58, 16931724.CrossRefGoogle Scholar
Melrose, J. R. & Ball, R. C. 2004 Continuous shear thickening transitions in model concentrated colloids – the role of interparticle forces. J. Rheol. 48 (5), 937960.Google Scholar
Mewis, J. & Wagner, N. J. 2011 Colloidal Suspension Rheology. Cambridge University Press.CrossRefGoogle Scholar
Morris, J. D. & Boulay, F. 1999 Curvilinear flows of noncolloidal suspensions: the role of normal stresses. J. Rheol. 43, 12131237.Google Scholar
Muthig, M., Prevost, S., Orglemeister, R. & Gradzielski, M. 2013 SASET: a program for series analysis of small-angle scattering data. J. Appl. Crystallogr. 46, 11871195.Google Scholar
Nazockdast, E. & Morris, J. F. 2013 Pair-particle dynamics and microstructure in sheared colloidal suspensions: simulation and Smoluchowski theory. Phys. Fluids 25 (7), 070601.Google Scholar
Newstein, M. C., Wang, H., Balsara, N. P., Lefebvre, A. A., Shnidman, Y., Watanabe, H., Osaki, K., Shikata, T., Niwa, H. & Morishima, Y. 1999 Microstructural changes in a colloidal liquid in the shear thinning and shear thickening regimes. J. Chem. Phys. 111 (10), 48274838.Google Scholar
Phung, T. N., Brady, J. F. & Bossis, G. 1996 Stokesian dynamics simulation of Brownian suspensions. J. Fluid Mech. 313, 181207.Google Scholar
Porcar, L., Pozzo, D., Langenbucher, G., Moyer, J. & Butler, P. D. 2011 Rheo small-angle neutron scattering at the National Institute of Standards and Technology Center for Neutron Research. Rev. Sci. Instrum. 82, 0830902.Google Scholar
Raviv, U., Giasson, S., Kampf, N., Gohy, J. F., Jerome, R. & Klein, J. 2003 Lubrication by charged polymers. Nature 425 (6954), 163165.Google Scholar
Russel, W. B., Wagner, N. J. & Mewis, J. 2013 Divergence in the low shear viscosity for Brownian hard-sphere dispersions: at random close packing or the glass transition? J. Rheol. 57 (6), 15551567.CrossRefGoogle Scholar
Seto, R., Mari, R., Morris, J. F. & Denn, M. M. 2013 Discontinuous shear thickening of frictional hard-sphere suspensions. Phys. Rev. Lett. 111, 218301.CrossRefGoogle ScholarPubMed
Shikata, T. & Pearson, D. S. 1994 Viscoelastic behavior of concentrated spherical suspensions. J. Rheol. 38 (3), 601616.Google Scholar
Toussaint, F., Roy, C. & Jezequel, P. H. 2009 Reducing shear thickening of cement-based suspensions. Rheol. Acta 48 (8), 883895.Google Scholar
Versmold, H., Musa, S. & Bierbaum, A. 2002 Concentrated colloidal dispersions: on the relation of rheology with small angle x-ray and neutron scattering. J. Chem. Phys. 116 (6), 26582662.CrossRefGoogle Scholar
Versmold, H., Musa, S., Dux, C., Lindner, P. & Urban, V. 2001 Shear-induced structure in concentrated dispersions: small angle synchrotron x-ray and neutron scattering. Langmuir 17 (1), 68126815.Google Scholar
Wagner, N. J. & Ackerson, B. J. 1992 Analysis of nonequilibrium structures of shearing colloidal suspensions. J. Chem. Phys. 97, 14731483.CrossRefGoogle Scholar
Wagner, N. J., Fuller, G. G. & Russel, W. B. 1988 The dichroism and birefringence of a hard-sphere suspension under shear. J. Chem. Phys. 89 (3), 15801587.Google Scholar
Watanabe, H., Yao, M.-L., Osaki, K., Shikata, T., Niwa, H., Morishima, Y., Balsara, N. P. & Wang, H. 1998 Nonlinear rheology and flow-induced structure in a concentrated spherical silica suspension. Rheol. Acta 37 (1), 16.Google Scholar
Xu, B. & Gilchrist, J. F. 2014 Microstructure of sheared monosized colloidal suspensions resulting from hydrodynamic and electrostatic interactions. J. Chem. Phys. 140, 204903.Google Scholar
Zhang, X. Z., Li, W. H. & Gong, X. L. 2008 The rheology of shear thickening fluid (STF) and the dynamic performance of an STF-filled damper. Smart Mater. Struct. 17 (1), 035027.Google Scholar
Supplementary material: PDF

Gurnon and Wagner supplementary material

Gurnon and Wagner supplementary material 1

Download Gurnon and Wagner supplementary material(PDF)
PDF 2.4 MB