Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-12-01T03:41:42.623Z Has data issue: false hasContentIssue false

Low-Reynolds-number flow through two-dimensional shunts

Published online by Cambridge University Press:  16 April 2013

A. Setchi*
Affiliation:
Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
A. J. Mestel
Affiliation:
Department of Mathematics, Imperial College London, London SW7 2AZ, UK
K. H. Parker
Affiliation:
Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
J. H. Siggers
Affiliation:
Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
*
Email address for correspondence: [email protected]

Abstract

Motivated by numerous biological and industrial applications relating to bypasses, mixing and leakage, we consider low-Reynolds-number flow through a shunt between two channels. An analytical solution for the streamfunction is found by matching biorthogonal expansions of Papkovich–Fadle eigenfunctions in rectangular subregions. The general solution can be adapted to model a variety of interesting problems of flow through two-dimensional shunts by imposing different inlet and outlet flux distributions. We present several such flow profiles but the majority of results relate to the particular problem of a side-to-side anastomosis in the small intestine. We consider different flux fractions through the shunt with particular emphasis on the pressure and recirculating regions, which are important factors in estimating health risks pertaining to this surgical procedure.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahams, I. D., Davis, A. M. J., Smith, S. & Llewellyn, G. 2008 Asymmetric channel divider in Stokes flow. SIAM J. Appl. Maths 68 (5), 14391463.Google Scholar
Adamson, R. H. & Michel, C. C. 1993 Pathways through the intercellular clefts of frog mesenteric capillaries. J. Physiol. 466, 303327.CrossRefGoogle ScholarPubMed
Buchwald, V. T. & Doran, H. E. 1965 Eigenfunctions of plane elastostatics. II. A mixed boundary value problem of the strip. Proc. R. Soc. Lond. A 284, 6982.Google Scholar
Cachile, M., Talon, L., Gomba, J. M., Hulin, J. P. & Auradou, H. 2012 Stokes flow paths separation and recirculation cells in x-junctions of varying angle. Phys. Fluids 24 (021704), 17.CrossRefGoogle Scholar
Crowdy, D. & Samson, O. 2010 Stokes flows past gaps in a wall. Proc. R. Soc. Lond. A 466 (2121), 27272746.Google Scholar
Davis, A. M. J. 1991 Shear flow disturbance due to a hole in the plane. Phys. Fluids 3 (3), 478480.Google Scholar
Driesen, C. H., Kuerten, J. G. M. & Streng, M. 1998 Low-Reynolds-number flow over partially covered cavities. J. Engng Maths 34 (1–2), 320.CrossRefGoogle Scholar
Foote, R. M. L. & Buchwald, V. T. 1985 An exact solution for the stress intensity factor for a double cantilever beam. Int. J. Fracture 29, 125134.CrossRefGoogle Scholar
Joseph, D. D. 1977 The convergence of biorthogonal series for biharmonic and Stokes flow edge problems. Part I. SIAM J. Appl. Maths 33 (2), 337347.Google Scholar
Joseph, D. D. & Sturges, L. 1975 The free surface on a liquid filling a trench heated from its side. J. Fluid Mech. 69, 565590.CrossRefGoogle Scholar
Joseph, D. D. & Sturges, L. 1978 The convergence of biorthogonal series for biharmonic and Stokes flow edge problems. Part II. SIAM J. Appl. Maths 34 (1), 726.Google Scholar
Joseph, D. D., Sturges, L. D. & Warner, W. H. 1982 Convergence of biorthogonal series of biharmonic eigenfunctions by the method of Titchmarsh. Arch. Rat. Mech. Anal. 78, 223279.Google Scholar
Joyce, M., Sweeney, K. J., Johnston, S. & Geraghty, J. G. 2002 Techniques of bowel resection and anastomosis. CME J. Gynecol. Oncol. 7, 284289.Google Scholar
Kim, M. U. & Chung, M. K. 1984 Two-dimensional slow viscous flow past a plate midway between an infinite channel. J. Phys. Soc. Japan 53 (1), 156166.Google Scholar
Kim, S. & Karrila, S. J. 2005 Microhydrodynamics: Principles and Selected Applications, 2nd edn. Dover.Google Scholar
Kiran, R. P., Nisar, P. J., Church, J. M. & Fazio, V. W. 2011 The role of primary surgical procedure in maintaining intestinal continuity for patients with Crohn’s colitis. Ann. Surg. 253 (6), 11301135.Google Scholar
Ko, H.-J. & Jeong, J.-T. 1994 Two-dimensional slow stagnation flow near a slit. J. Phys. Soc. Japan 63 (9), 32883294.Google Scholar
Moffatt, H. K. 1963 Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18 (1), 118.CrossRefGoogle Scholar
Phillips, T. N. 1989 Singular matched eigenfunction expansions for Stokes flow around a corner. IMA J. Appl. Maths 42 (1), 1326.Google Scholar
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow, 1st edn. Cambridge University Press.Google Scholar
Resegotti, A., Astegiano, M., Farina, E. C., Ciccone, G., Avagnina, G., Giustetto, A., Campra, D. & Fronda, G. R. 2005 Side-to-side stapled anastomosis strongly reduces anastomotic leak rates in Crohn’s disease surgery. Dis. Colon Rectum 48 (3), 464468.Google Scholar
Setchi, A. 2012 Mathematical modelling of flow through shunts: application to patent ductus arteriosus and side-to-side anastomosis. PhD thesis, Imperial College London.Google Scholar
Setchi, A., Mestel, A. J., Siggers, J. H., Parker, K. H., Tan, M. W. & Wang, K. 2012 Mathematical model of flow through the patent ductus arteriosus. J. Math. Biol. doi:10.1007/s00285-012-0596-8.Google Scholar
Smith, R. C. T. 1952 The bending of a semi-infinite strip. Austral. J. Sci. Res. 5, 227237.Google Scholar
Smith, S. H. 1987 Stokes flow past slits and holes. Intl J. Multiphase Flow 13, 219231.Google Scholar
Souba, W. W., Fink, M. P., Jurkovic, G. J., Pearce, W. H., Pemberton, J. H. & Soper, N. J. (Eds) 2007 ACS Surgery: Principles and Practice, 6th edn. Decker Publishing, Particular contribution by N. J. Mortensen and S. Ashraf in Chapter 5.29, Intestinal Anastomosis. Image available at http://206.47.151.137/bcdecker/figures/acs/thumb/part05_ch29_fig5.gif (accessed 23 July 2012).Google Scholar
Tripathi, D. 2011 A mathematical model for the peristaltic flow of chyme movement in small intestine. Math. Biosci. 233 (2), 9097.CrossRefGoogle ScholarPubMed
Trogdon, S. A. & Joseph, D. D. 1982 Matched eigenfunction expansions for a slow flow over a slot. J. Non-Newtonian Fluid Mech. 10, 185213.CrossRefGoogle Scholar