Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-18T16:18:41.622Z Has data issue: false hasContentIssue false

Laminar and transitional flow of drilling muds and various suspensions in circular tubes

Published online by Cambridge University Press:  28 March 2006

Bernard Le Fur
Affiliation:
Laboratoire d'Aérothermique du C.N.R.S., Meudon, France
Madeleine Martin
Affiliation:
Institut Français du Pétrole, Rueil-Malmaison, France

Abstract

Most suspensions exhibit a rheological behaviour which cannot be represented by either Bingham's or Ostwald–De Waele's law. In studying such cases a very simple expression with only three parameters may be used. Starting with an intermediate law of this sort, this paper gives velocity profiles and head losses in laminar flow, which have been computed and plotted on diagrams in non-dimensional co-ordinates.

It has been found that transition flow rates in circular tubes for data taken from the literature and from experiments conducted on drilling muds at the Institut Français du Pétrole, are efficiently predicted by an empirical criterion (Ryan & Johnson 1959) which establishes a relation between a generalized Reynolds number and a generalized Hedström number.

Type
Research Article
Copyright
© 1967 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves, G. E., Boucher, R. L. & Pigford, R. L. 1952 Pipe line design for non Newtonian solutions and suspensions. Chem. Engng Progr. 48, 38593.Google Scholar
Bogue, D. C. 1960 Velocity profiles in turbulent non-Newtonian pipe flow. Ph.D. Thesis, Univ. of Delaware (Univ. Microfilms, Inc. Ann Arbor), pp. 279.
Briant, J. 1956 Etude des propriétés rhéologiques des graisses à l'aide du viscosimètre S.O.D. Rev. Inst. FranÇ. Pétrole, 11, 11333; 247–87.Google Scholar
Cadwell, D. W. & Babbitt, H. E. 1941 Flow of muds, sludges and suspensions in circular pipe. Trans. A.I.Ch.E. 37, 23766.Google Scholar
Casson, N. 1959 A flow equation for pigment—oil suspensions of the printing ink type. In Rheology of disperse systems. Ed. C. C. Mill, pp. 84104. London: Pergamon Press.
Dodge, D. W. 1958 Turbulent flow of non-Newtonian fluids in smooth round tubes. Ph.D. Thesis, Univ. of Delaware.
Hanks, R. W. 1963 The laminar turbulent transition for fluids with a yield stress. A.I.Ch.E. J. 9, 3069.Google Scholar
Hanks, R. W. & Christiansen, E. B. 1962 The laminar turbulent transition in non-isothermal flow of pseudoplastic fluids in tubes. A.I.Ch.E. J. 8, 46771.Google Scholar
Herschel, W. H. & Bulkley, R. 1926 Konsistenzmessungen von Gummi-Benzollösungen. Kolloid Z. 39, 291300.Google Scholar
Krieger, I. M. & Maron, S. H. 1954 Direct determination of the flow curve of non-Newtonian fluids. III. Standardized treatment of viscometric data. J. Appl. Phys. 25, 725.Google Scholar
Lasvergères, J. M. & Lanchon, M. 1962 Résolution numérique de l’équation d’écoulement d'un fluide non-Newtonien dans un tube capillaire. Rapp. Inst. FranÇ. Pétrole, no. 7151.
Martin, M. & Le fur, B. 1963 Etude de l’écoulement laminaire d'un fluide non-Newtonien dans un tube de section circulaire. Application aux boues de forage. Rev. Inst. FranÇ. Pétrole, 18, N0 hors-série, 32.Google Scholar
Melrose, J. C. & Lilienthal, W. B. 1951 Plastic flow properties of drilling fluids—measurement and application. J. Petroleum Tech. 192, 159.Google Scholar
Metzner, A. B. 1956 Non-Newtonian technology: fluid mechanics, mixing and heat transfer. Adv. Chem. Engng. 1, 77153.Google Scholar
Powell, R. E. & Eyring, H. 1944 Mechanism for relaxation theory of viscosity. Nature, Lond. 154, 4278.Google Scholar
Prager, W. 1961 Introduction to Mechanics of Continua, p. 141. Chicago: Ginn and Co.
Ryan, N. W. & Johnson, M. M. 1959 Transition from laminar to turbulent flow in pipes. A.I.Ch.E. J. 5, 4335.Google Scholar
Sisko, A. W. 1958 The flow of lubricating greases. Ind. Engng Chem. 50, 1789.Google Scholar
Thomas, D. G. 1962 Transport characteristics of suspensions: Part IV. Friction loss of concentrated—flocculated suspensions in turbulent flow. A.I.Ch.E. J. 8, 26671.Google Scholar
Wilhelm, R. H., Wroughton, D. M. & Loeffel, W. F. 1939 Flow of suspensions through pipes. Ind. Engng. Chem. 31, 6227.Google Scholar