Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-12-03T00:39:51.788Z Has data issue: false hasContentIssue false

Jetting of viscous droplets from cavitation-induced Rayleigh–Taylor instability

Published online by Cambridge University Press:  11 May 2018

Qingyun Zeng
Affiliation:
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
Silvestre Roberto Gonzalez-Avila
Affiliation:
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
Sophie Ten Voorde
Affiliation:
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
Claus-Dieter Ohl*
Affiliation:
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore Faculty of Natural Sciences, Institute for Physics, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39016 Magdeburg, Germany
*
Email address for correspondence: [email protected]

Abstract

Liquid jetting and fragmentation are important in many industrial and medical applications. Here, we study the jetting from the surface of single liquid droplets undergoing internal volume oscillations. This is accomplished by an explosively expanding and collapsing vapour bubble within the droplet. We observe jets emerging from the droplet surface, which pinch off into finer secondary droplets. The jetting is excited by the spherical Rayleigh–Taylor instability where the radial acceleration is due to the oscillation of an internal bubble. We study this jetting and the effect of fluid viscosity experimentally and numerically. Experiments are carried out by levitating the droplet in an acoustic trap and generating a laser-induced cavitation bubble near the centre of the droplet. On the simulation side, the volume of fluid method (OpenFOAM) solves the compressible Navier–Stokes equations while accounting for surface tension and viscosity. Both two-dimensional (2-D) axisymmetric and 3-D simulations are performed and show good agreement with each other and the experimental observation. While the axisymmetric simulation reveals how the bubble dynamics results destabilizes the interface, only the 3-D simulation computes the geometrically correct slender jets. Overall, experiments and simulations show good agreement for the bubble dynamics, the onset of disturbances and the rapid ejection of filaments after bubble collapse. Additionally, an analytic model for the droplet surface perturbation growth is developed based on the spherical Rayleigh–Taylor instability analysis, which allows us to evaluate the surface stability over a large parameter space. The analytic model predicts correctly the onset of jetting as a function of Reynolds number and normalized internal bubble energy.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agbaglah, G., Thoraval, M.-J., Thoroddsen, S. T., Zhang, L. V., Fezzaa, K. & Deegan, R. D. 2015 Drop impact into a deep pool: vortex shedding and jet formation. J. Fluid Mech. 764, R1.Google Scholar
Antkowiak, A., Bremond, N., Le Dizès, S. & Villermaux, E. 2007 Short-term dynamics of a density interface following an impact. J. Fluid Mech. 577, 241250.Google Scholar
Bell, G. I.1951 Taylor instability on cylinders and spheres in the small amplitude approximation. Tech. Rep. LA-1321. Los Alamos Scientific Laboratory, Los Alamos, NM.Google Scholar
Bergmann, R., Van Der Meer, D., Gekle, S., Van Der Bos, A. & Lohse, D. 2009 Controlled impact of a disk on a water surface: cavity dynamics. J. Fluid Mech. 633, 381409.Google Scholar
Binnie, A. M. 1953 The stability of the surface of a cavitation bubble. Math. Proc. Camb. Phil. Soc. 49, 151155.Google Scholar
Blake, J. R. & Gibson, D. C. 1981 Growth and collapse of a vapour cavity near a free surface. J. Fluid Mech. 111, 123140.CrossRefGoogle Scholar
Boulton-Stone, J. M. & Blake, J. R. 1993 Gas bubbles bursting at a free surface. J. Fluid Mech. 254, 437466.Google Scholar
Brackbill, J. U., Kothe, D. B. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100 (2), 335354.Google Scholar
Brenner, M. P., Hilgenfeldt, S. & Lohse, D. 2002 Single-bubble sonoluminescence. Rev. Mod. Phys. 74 (2), 425.Google Scholar
Brenner, M. P., Lohse, D. & Dupont, T. F. 1995 Bubble shape oscillations and the onset of sonoluminescence. Phys. Rev. Lett. 75 (5), 954.Google Scholar
Chahine, G. L. 1977 Interaction between an oscillating bubble and a free surface. Trans. ASME J. Fluids Engng 99 (4), 709716.Google Scholar
Daly, B. J. 1969 Numerical study of the effect of surface tension on interface instability. Phys. Fluids 12 (7), 13401354.CrossRefGoogle Scholar
Duchemin, L., Popinet, S., Josserand, C. & Zaleski, S. 2002 Jet formation in bubbles bursting at a free surface. Phys. Fluids 14 (9), 30003008.CrossRefGoogle Scholar
Eggers, J. 1997 Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69 (3), 865.Google Scholar
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71 (3), 036601.CrossRefGoogle Scholar
Elgowainy, A. & Ashgriz, N. 1997 The Rayleigh–Taylor instability of viscous fluid layers. Phys. Fluids 9 (6), 16351649.Google Scholar
Foresti, D., Nabavi, M. & Poulikakos, D. 2012 On the acoustic levitation stability behaviour of spherical and ellipsoidal particles. J. Fluid Mech. 709, 581592.Google Scholar
Gonzalez-Avila, S. R. & Ohl, C.-D. 2016 Fragmentation of acoustically levitating droplets by laser-induced cavitation bubbles. J. Fluid Mech. 805, 551576.CrossRefGoogle Scholar
Gonzalez-Avila, S. R., Song, C. & Ohl, C.-D. 2015 Fast transient microjets induced by hemispherical cavitation bubbles. J. Fluid Mech. 767, 3151.Google Scholar
Greenshields, C. J.2015 OpenFOAM user guide. OpenFOAM Foundation Ltd, version 3(1).Google Scholar
Hilgenfeldt, S., Lohse, D. & Brenner, M. P. 1996 Phase diagrams for sonoluminescing bubbles. Phys. Fluids 8 (11), 28082826.Google Scholar
Inoue, C., Izato, Y.-i., Miyake, A. & Villermaux, E. 2017 Direct self-sustained fragmentation cascade of reactive droplets. Phys. Rev. Lett. 118, 074502.CrossRefGoogle ScholarPubMed
Kiyama, A., Tagawa, Y., Ando, K. & Kameda, M. 2016 Effects of a water hammer and cavitation on jet formation in a test tube. J. Fluid Mech. 787, 224236.Google Scholar
Koch, M., Lechner, C., Reuter, F., Köhler, K., Mettin, R. & Lauterborn, W. 2016 Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using OpenFOAM. Comput. Fluids 126, 7190.Google Scholar
Krechetnikov, R. 2009 Rayleigh–Taylor and Richtmyer–Meshkov instabilities of flat and curved interfaces. J. Fluid Mech. 625 (625), 387410.Google Scholar
Kull, H.-J. 1991 Theory of the Rayleigh–Taylor instability. Phys. Rep. 206 (5), 197325.Google Scholar
Longuet-Higgins, M. S. 1983 Bubbles, breaking waves and hyperbolic jets at a free surface. J. Fluid Mech. 127, 103121.Google Scholar
Marston, J. O. & Thoroddsen, S. T. 2015 Laser-induced micro-jetting from armored droplets. Exp. Fluids 56 (7), 140.Google Scholar
Obreschkow, D., Kobel, P., Dorsaz, N., De Bosset, A., Nicollier, C. & Farhat, M. 2006 Cavitation bubble dynamics inside liquid drops in microgravity. Phys. Rev. Lett. 97 (9), 094502.CrossRefGoogle ScholarPubMed
Peters, I. R., Tagawa, Y., Oudalov, N., Sun, C., Prosperetti, A., Lohse, D. & van der Meer, D. 2013 Highly focused supersonic microjets: numerical simulations. J. Fluid Mech. 719, 587605.CrossRefGoogle Scholar
Plesset, M. S. 1954 On the stability of fluid flows with spherical symmetry. J. Appl. Phys. 25 (1), 9698.Google Scholar
Prosperetti, A. 1977 Viscous effects on perturbed spherical flows. Q. Appl. Maths 34 (4), 339352.Google Scholar
Roberts, M. S. & Jacobs, J. W. 2016 The effects of forced small-wavelength, finite-bandwidth initial perturbations and miscibility on the turbulent Rayleigh–Taylor instability. J. Fluid Mech. 787, 5083.Google Scholar
Rusche, H.2003 Computational fluid dynamics of dispersed two-phase flows at high phase fractions. PhD thesis, Imperial College, University of London.Google Scholar
Shi, W. T. & Apfel, R. E. 1996 Deformation and position of acoustically levitated liquid drops. J. Acoust. Soc. Am. 99 (4), 19771984.Google Scholar
Tagawa, Y., Oudalov, N., Visser, C. W., Peters, I. R., van der Meer, D., Sun, C., Prosperetti, A. & Lohse, D. 2012 Highly focused supersonic microjets. Phys. Rev. X 2 (3), 031002.Google Scholar
Taylor, G. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Part I. Proc. R. Soc. Lond. A 201, 192196.Google Scholar
Trinh, P. H., Kim, H., Hammoud, N., Howell, P. D., Chapman, S. J. & Stone, H. A. 2014 Curvature suppresses the Rayleigh–Taylor instability. Phys. Fluids 26 (5), 051704.Google Scholar
Ubbink, O.1997 Numerical prediction of two fluid systems with sharp interfaces. PhD thesis, Imperial College, University of London.Google Scholar
Villermaux, E. 2007 Fragmentation. Annu. Rev. Fluid Mech. 39, 419446.Google Scholar
Weller, H. G, Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12 (6), 620631.Google Scholar
Yarin, A. L., Pfaffenlehner, M. & Tropea, C. 1998 On the acoustic levitation of droplets. J. Fluid Mech. 356, 6591.Google Scholar
Zeff, B. W., Kleber, B., Fineberg, J. & Lathrop, D. P. 2000 Singularity dynamics in curvature collapse and jet eruption on a fluid surface. Nature 403 (6768), 401404.Google Scholar

Zeng et al. supplementary movie 1

Jetting of water droplet in experiment, simulation, Rdeq is 1.429 mm, laser energy is 2.2 mJ, movie of figure 5 (a).

Download Zeng et al. supplementary movie 1(Video)
Video 429.1 KB

Zeng et al. supplementary movie 2

Jetting of water droplet in 2D axisymmetric simulation, Rdeq is 1.429 mm, movie of figure 5 (b).

Download Zeng et al. supplementary movie 2(Video)
Video 1.7 MB

Zeng et al. supplementary movie 3

Jetting of water droplet in 3D simulation, Rdeq is 1.429 mm, movie of figure 5 (c).

Download Zeng et al. supplementary movie 3(Video)
Video 3.5 MB