Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-09T15:27:47.618Z Has data issue: false hasContentIssue false

Irregular self-similar configurations of shock-wave impingement on shear layers

Published online by Cambridge University Press:  14 June 2019

Daniel Martínez-Ruiz
Affiliation:
Grupo de Mecánica de Fluidos, Universidad Carlos III, Av. Universidad 30, 28911, Leganés, Spain ETSIAE, Universidad Politécnica de Madrid, Plaza del Cardenal Cisneros, 3, 28040, Madrid, Spain
César Huete*
Affiliation:
Grupo de Mecánica de Fluidos, Universidad Carlos III, Av. Universidad 30, 28911, Leganés, Spain
Pedro J. Martínez-Ferrer
Affiliation:
Barcelona Supercomputing Center (BSC), C. Jordi Girona, 29, 08034, Barcelona, Spain
Daniel Mira
Affiliation:
Barcelona Supercomputing Center (BSC), C. Jordi Girona, 29, 08034, Barcelona, Spain
*
Email address for correspondence: [email protected]

Abstract

An oblique shock impinging on a shear layer that separates two uniform supersonic streams, of Mach numbers $M_{1}$ and $M_{2}$, at an incident angle $\unicode[STIX]{x1D70E}_{i}$ can produce regular and irregular interactions with the interface. The region of existence of regular shock refractions with stable flow structures is delineated in the parametric space $(M_{1},M_{2},\unicode[STIX]{x1D70E}_{i})$ considering oblique-shock impingement on a supersonic vortex sheet of infinitesimal thickness. It is found that under supercritical conditions, the oblique shock fails to deflect both streams consistently and to provide balanced flow properties downstream. In this circumstance, the flow renders irregular configurations which, in the absence of characteristic length scales, exhibit self-similar pseudosteady behaviours. These cases involve shocks moving upstream at constant speed and increasing their intensity to comply with equilibrium requirements. Differences in the variation of propagation speed among the flows yield pseudosteady configurations that grow linearly with time. Supercritical conditions are described theoretically and reproduced numerically using highly resolved inviscid simulation.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abd-El-Fattah, A. M., Henderson, L. F. & Lozzi, A. 1976 Precursor shock waves at a slow–fast gas interface. J. Fluid Mech. 76, 157176.Google Scholar
Abd-El-Fattah, A. M. & Henderson, L. F. 1978a Shock waves at a fast–slow gas interface. J. Fluid Mech. 86, 1532.Google Scholar
Abd-El-Fattah, A. M. & Henderson, L. F. 1978b Shock waves at a slow–fast gas interface. J. Fluid Mech. 89, 7995.Google Scholar
Adler, M. C. & Gaitonde, D. V. 2018 Dynamic linear response of a shock/turbulent-boundary-layer interaction using constrained perturbations. J. Fluid Mech. 840, 291341.Google Scholar
Balsara, D. S. & Shu, C. W. 2000 Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 106, 405452.Google Scholar
Ben-Dor, G. 2007 Shock Wave Reflection Phenomena, vol. 2. Springer.Google Scholar
Brouillette, M. 2002 The Richtmyer–Meshkov instability. Annu. Rev. Fluid Mech. 34, 445468.Google Scholar
Buttsworth, D. R. 1996 Interaction of oblique shock waves and planar mixing regions. J. Fluid Mech. 306, 4357.Google Scholar
Buttsworth, D. R., Morgan, R. G. & Jones, T. V. 1997 Experiments on oblique shock interactions with planar mixing regions. AIAA J. 35, 17741777.Google Scholar
Chaudhuri, A., Hadjadj, A., Chinnayya, A. & Palerm, S. 2011 Numerical study of compressible mixing layers using high-order WENO schemes. J. Sci. Comput. 47, 170197.Google Scholar
Dewey, J. M. & McMillin, D. J. 1985a Observation and analysis of the Mach reflection of weak uniform plane shock waves. Part 1. Observations. J. Fluid Mech. 152, 4966.Google Scholar
Dewey, J. M. & McMillin, D. J. 1985b Observation and analysis of the Mach reflection of weak uniform plane shock waves. Part 2. Analysis. J. Fluid Mech. 152, 6781.Google Scholar
Dolling, D. S. 2001 Fifty years of shock-wave/boundary-layer interaction research: What next? AIAA J. 39, 15171531.Google Scholar
Estruch-Samper, D. & Chandola, G. 2018 Separated shear layer effect on shock-wave/turbulent-boundary-layer interaction unsteadiness. J. Fluid Mech. 848, 154192.Google Scholar
Fang, X., Shen, C., Sun, M. & Hu, Z. 2018 Effects of oblique shock waves on turbulent structures and statistics of supersonic mixing layers. Phys. Fluids 30, 116101.Google Scholar
Fowles, G. 1981 Stimulated and spontaneous emission of acoustic waves from shock fronts. Phys. Fluids 24, 220227.Google Scholar
Fu, S. & Li, Q. 2006 Numerical simulation of compressible mixing layers. Intl J. Heat Fluid Flow 27, 895901.Google Scholar
Gottlieb, S. & Shu, C. W. 1998 Total variation diminishing Runge–Kutta schemes. Maths Comput. 67, 7385.Google Scholar
Grossman, I. J. & Bruce, P. J. 2018 Confinement effects on regular–irregular transition in shock-wave-boundary-layer interactions. J. Fluid Mech. 853, 174204.Google Scholar
Gutmark, E. J., Schado, K. C. & Yu, K. H. 1995 Mixing enhancement in supersonic free shear flows. Annu. Rev. Fluid Mech. 27, 375417.Google Scholar
Hayes, W. D. & Probstein, R. F. 2004 Hypersonic Inviscid Flow, 2nd edn. Dover.Google Scholar
Henderson, L. F. 1966 The refraction of a plane shock wave at a gas interface. J. Fluid Mech. 26, 607637.Google Scholar
Henderson, L. F. 1967 The reflexion of a shock wave at a rigid wall in the presence of a boundary layer. J. Fluid Mech. 30, 699722.Google Scholar
Henderson, L. F. & Macpherson, A. K. 1968 On the irregular refraction of plane shock wave at a Mach number interface. J. Fluid Mech. 32, 185202.Google Scholar
Henderson, L. F. & Menikoff, R. 1998 Triple-shock entropy theorem and its consequences. J. Fluid Mech. 366, 179210.Google Scholar
Hornung, H. 1986 Regular and Mach reflection of shock waves. Annu. Rev. Fluid Mech. 18, 3358.Google Scholar
Huete, C., Sánchez, A. L. & Williams, F. A. 2017 Diffusion-flame ignition by shock-wave impingement on a hydrogen–air supersonic mixing layer. J. Propul. Power 33, 256263.Google Scholar
Huete, C., Sánchez, A. L., Williams, F. A. & Urzay, J. 2015 Diffusion-flame ignition by shock-wave impingement on a supersonic mixing layer. J. Fluid Mech. 784, 74108.Google Scholar
Huete, C., Urzay, J., Sánchez, A. L. & Williams, F. A. 2016 Weak-shock interactions with transonic laminar mixing layers of fuels for high-speed propulsion. AIAA J. 54, 966979.Google Scholar
Jahn, R. G. 1956 The refraction of shock waves at a gaseous interface. J. Fluid Mech. 1, 457489.Google Scholar
Jammalamadaka, A., Li, Z. & Jaberi, F. 2014 Numerical investigations of shock wave interactions with a supersonic turbulent boundary layer. Phys. Fluids 26, 056101.Google Scholar
Jones, D. M., Martin, P. M. & Thornhill, C. K. 1951 A note on the pseudosteady flow behind a strong shock diffracted or reflected at a corner. Proc. R. Soc. Lond. A 209, 238248.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics, 2nd edn. p. 423. Pergamon Press.Google Scholar
Laurence, S. J., Karl, S., Schramm, J., Martínez, J. & Hannemann, K. 2013 Transient fluid-combustion phenomena in a model scramjet. J. Fluid Mech. 722, 85120.Google Scholar
Lighthill, M. J. 1953a On boundary layers and upstream influence. I. A comparison between subsonic and supersonic flows. Proc. R. Soc. Lond. A 217, 344357.Google Scholar
Lighthill, M. J. 1953b On boundary layers and upstream influence. II. Supersonic flows without separation. Proc. R. Soc. Lond. A 213, 478507.Google Scholar
Lu, P.J & Wu, K. C. 1991 On the shock enhancement of confined supersonic mixing flows. Phys. Fluids A 3, 30463062.Google Scholar
Mach, E. 1878 Uber den Verlauf von Funkenwellen in der Ebene und im Raume. Sitz. ber. Akad. Wiss. Wien 78, 819838.Google Scholar
Mahle, I., Foysi, H., Sarkar, S. & Friedrich, R. 2007 On the turbulence structure in inert and reacting compressible mixing layers. J. Fluid Mech. 593, 171180.Google Scholar
Martínez-Ferrer, P. J., Buttay, R., Lehnasch, G. & Mura, A. 2014 A detailed verification procedure for compressible reactive multicomponent Navier–Stokes solver. J. Comput. Fluids 89, 88110.Google Scholar
Martínez-Ferrer, P. J., Lehnasch, G. & Mura, A. 2017 Compressibility and heat release effects in high-speed reactive mixing layers I. Growth rates and turbulence characteristics. Combust. Flame 89, 284303.Google Scholar
Martínez-Ruiz, D., Huete, C., Sánchez, A. L. & Williams, F. A. 2018 Interaction of oblique shocks and laminar shear layers. AIAA J. 56, 10231030.Google Scholar
Menon, S.1989 Shock-wave-induced mixing enhancement in scramjet combustors. AIAA Paper 0104.Google Scholar
Meshkov, E. E. 1969 Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4, 101104.Google Scholar
Mikaelian, E. E. 1994 Oblique shocks and the combined Rayleigh–Taylor, Kelvin–Helmholtz, and Richtmyer–Meshkov instabilities. Phys. Fluids 6, 19431945.Google Scholar
Nayfeh, A. H. 1991 Triple-deck structure. Comput. Fluids 20, 269292.Google Scholar
von Neumann, J.1943a Oblique reflection of shocks. Explos. Res. Rep. 12, Navy Dept., Bureau of Ordinance, Washington, DC, USA.Google Scholar
von Neumann, J.1943b Refraction, intersection and reflection of shock waves. NAVORD Rep. 203-45, Navy Dept., Bureau of Ordinance, Washington, DC, USA.Google Scholar
Nishihara, K., Wouchuk, J. G., Matsuoka, C., Ishizaki, R. & Zhakhovsky, V. V. 2010 Richtmyer–Meshkov instability: theory of linear and nonlinear evolution. Phil. Trans. R. Soc. Lond. A 368, 17691807.Google Scholar
Pantano, C. & Sarkar, S. 2002 A study of compressibility effects in the high-speed turbulent shear layer using direct simulation. J. Fluid Mech. 451, 329371.Google Scholar
Pirozzoli, S. & Bernardini, M. 2011 Direct numerical simulation database for impinging shock wave/turbulent boundary-layer interaction. AIAA J. 29, 13071312.Google Scholar
Quadros, R. & Bernardini, M. 2018 Numerical investigation of transitional shock-wave/boundary-layer interaction in supersonic regime. AIAA J. 56, 27122724.Google Scholar
Rao, S. M. V., Asano, S., Imani, I. & Saito, O. 2018 Effect of shock interactions on mixing layer between co-flowing supersonic flows in a confined duct. Shock Waves 28, 267283.Google Scholar
Richtmyer, R. D. 1960 Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Maths 13, 297319.Google Scholar
Rikanati, A., Sadot, O., Ben-Dor, G., Shvarts, D., Kuribayashi, T. & Takayama, K. 2006 Shock-wave Mach-reflection slip-stream instability: a secondary small-scale turbulent mixing phenomenon. Phys. Rev. Lett. 96, 174503.Google Scholar
Riley, N. 1960 Interaction of a shock wave with a mixing region. J. Fluid Mech. 7, 321339.Google Scholar
Rogers, M. M. & Moser, R. D. 1994 Direct simulation of a self-similar turbulent mixing layer. Phys. Fluids 6, 903923.Google Scholar
Rubidge, S. & Skews, B. 2014 Shear-layer instability in the Mach reflection of shock waves. Shock Waves 24, 479488.Google Scholar
Samtaney, R. 1997 Computational methods for self-similar solutions of the compressible Euler equations. J. Comput. Phys. 132, 327345.Google Scholar
Samtaney, R. & Zabusky, N. J. 1993 On shock polar analysis and analytical expressions for vorticity deposition in shock-accelerated density-stratified interfaces. Phys. Fluids A 542, 105114.Google Scholar
Sandham, N. D. & Reynolds, W. C. 1989 Compressible mixing layer: linear theory and direct simulation. AIAA J. 28, 618624.Google Scholar
Skews, B. W. & Ashworth, J. T. 2005 The physical nature of weak shock reflection. J. Fluid Mech. 542, 105114.Google Scholar
Skews, B. W., Li, G. & Platon, R. 2009 Experiments on Guderley Mach reflection. Shock Waves 19, 95105.Google Scholar
Stanley, S. & Sarkar, S. 1997 Simulations of spatially developing two-dimensional shear layers and jets. Theor. Comput. Fluid Dyn. 9, 121147.Google Scholar
Sternberg, J. 1959 Triple-shock-wave intersections. Phys. Fluids 2, 179206.Google Scholar
Stewartson, K. & Williams, P. G. 1969 Self-induced separation. Proc. R. Soc. Lond. A 312, 181206.Google Scholar
Stull, D. R. & Prophet, H.1971 JANAF Thermochemical Tables, 2nd edn. NSRDS-NBS 37, U.S. Department of Commerce/National Bureau of Standards. National Bureau of Standards U.S.Google Scholar
Tesdall, A. M., Sanders, R. & Keyfit, B. L. 2008 Self-similar solutions for the triple-point paradox in gasdynamics. SIAM J. Appl. Maths 68, 13601377.Google Scholar
Tritarelli, R. C. & Kleiser, L. 2017 Vorticity-production mechanisms in shock/mixing-layer interaction problems. Shock Waves 27, 143152.Google Scholar
Urzay, J. 2018 Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annu. Rev. Fluid Mech. 50, 593627.Google Scholar
Vasilev, E. I., Elperin, T. & Ben-Dor, G. 2008 Analytical reconsideration of the von Neumann paradox in the reflection of a shock wave over a wedge. Phys. Fluids 20, 046101.Google Scholar
Whitham, G. B. 1974 Linear and Nonlinear Waves. Wiley.Google Scholar
Wouchuk, J. G. 2001a Growth rate of the linear Richtmyer–Meshkov instability when a shock is reflected. Phys. Rev. E 63, 056303.Google Scholar
Wouchuk, J. G. 2001b Growth rate of the Richtmyer–Meshkov instability when a rarefaction is reflected. Phys. Plasmas 8, 28902907.Google Scholar
Xiong, B., Wang, Z. G. & Tao, Y. 2018 Analysis and modelling of unsteady shock train motions. J. Fluid Mech. 846, 240262.Google Scholar