Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-20T08:36:28.587Z Has data issue: false hasContentIssue false

Inviscid and viscous aerodynamics of dense gases

Published online by Cambridge University Press:  21 May 2007

PAOLA CINNELLA
Affiliation:
Dipartimento di Ingegneria dell'Innovazione, Università del Salento, via per Monteroni, 73100, Lecce, Italy
PIETRO M. CONGEDO
Affiliation:
Dipartimento di Ingegneria dell'Innovazione, Università del Salento, via per Monteroni, 73100, Lecce, Italy

Abstract

A numerical investigation of transonic and low-supersonic flows of dense gases of the Bethe–Zel'dovich–Thompson (BZT) type is presented. BZT gases exhibit, in a range of thermodynamic conditions close to the liquid/vapour coexistence curve, negative values of the fundamental derivative of gasdynamics. This can lead, in the transonic and supersonic regime, to non-classical gasdynamic behaviours, such as rarefaction shock waves, mixed shock/fan waves and shock splitting. In the present work, inviscid and viscous flows of a BZT fluid past an airfoil are investigated using accurate thermo-physical models for gases close to saturation conditions and a third-order centred numerical method. The influence of the upstream kinematic and thermodynamic conditions on the flow patterns and the airfoil aerodynamic performance is analysed, and possible advantages deriving from the use of a non-conventional working fluid are pointed out.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baldwin, B. & Lomax, H. 1978 Thin layer approximation and algebraic model for separated turbulent flows. AIAA Paper 78–257.CrossRefGoogle Scholar
Brown, B. P. & Argrow, B. M. 2000 Application of Bethe–Zel'dovich–Thompson in organic Rankine cycles. J. Prop. Power 16, 11181124.CrossRefGoogle Scholar
Cengel, Y. A. & Boles, M. A. 2006 Thermodynamics: an Engineering Approach, 5th edn. McGraw-Hill.Google Scholar
Chung, T. H., Ajlan, M., Lee, L. L. & Starling, K. E. 1988 Generalized multiparameter correlation for nonpolar and polar fluid transport properties. Ind. Engng Chem. Res. 27, 671679.CrossRefGoogle Scholar
Cinnella, P. & Congedo, P. M. 2005 a Aerodynamic performance of transonic Bethe–Zel'dovich–Thompson flows past an airfoil. AIAA J. 43, 370378.CrossRefGoogle Scholar
Cinnella, P. & Congedo, P. M. 2005 b Numerical solver for dense gas flows. AIAA J. 43, 24572461.CrossRefGoogle Scholar
Congedo, P. M., Corre, C. & Cinnella, P. 2007 Airfoil shape optimization for transonic flows of Bethe–Zel'dovich–Thompson fluids. AIAA J. 5 (in press).Google Scholar
Cramer, M. S. 1989 a Negative nonlinearity in selected fluorocarbons. Phys. Fluids A 1, 18941897.CrossRefGoogle Scholar
Cramer, M. S. 1989 b Shock splitting in single-phase gases. J. Fluid Mech. 199, 281296.CrossRefGoogle Scholar
Cramer, M. S. 1991 Nonclassical dynamics of classical gases. In Nonlinear Waves in Real Fluids (ed. Kluwick, A.), pp. 91145. Springer.CrossRefGoogle Scholar
Cramer, M. S. & Crickenberg, A. B. 1991 The dissipative structure of shock waves in dense gases. J. Fluid Mech 223, 325355.CrossRefGoogle Scholar
Cramer, M. S. & Kluwick, A. 1984 On the propagation of waves exhibiting both positive and negative nonlinearity. J. Fluid Mech. 142, 937.CrossRefGoogle Scholar
Cramer, M. S. & Park, S. 1999 On the suppression of shock-induced separation in Bethe–Zel'dovich–Thompson fluids. J. Fluid Mech 393, 121.CrossRefGoogle Scholar
Cramer, M. S. & Tarkenton, G. M. 1992 Transonic flows of Bethe–Zel'dovich–Thompson fluids. J. Fluid Mech. 240, 197298.CrossRefGoogle Scholar
Cramer, M. S., Whitlock, S. T. & Tarkenton, G. M. 1996 Transonic and boundary layer similarity laws in dense gases. Trans. ASME I: J. Fluids Engng 118, 481485.Google Scholar
Dervieux, A., van Leer, B. & Rizzi, A. (ed.) 1989 Numerical Simulation of Compressible Euler Flows, Notes on Numerical Fluid Mechanics, vol. 26. Vieweg.Google Scholar
Emanuel, G. 1994 Assessment of the Martin–Hou equation for modelling a nonclassical fluid. Trans. ASME I: J. Fluids Engng 116, 883884.Google Scholar
Guardone, A., Vigevano, L. & Argrow, B. M. 2004 Assessment of themodynamic models for dense gas dynamics. Phys. Fluids 16, 38783887.CrossRefGoogle Scholar
Hayes, W. D. 1966 La seconde approximation pour les écoulements transsoniques non visqueux. J. Méc. 5, 163206.Google Scholar
Jameson, A., Schmidt, W. & Turkel, E. 1981 Solutions of the Euler equations by finite volume methods using Runge–Kutta time stepping schemes. AIAA Paper 81-1259.CrossRefGoogle Scholar
Kluwick, A. 2000 Marginally separated flows in dilute and dense gases. Phil. Trans. R. Soc. Lond. A 358, 31693192.CrossRefGoogle Scholar
Kluwick, A. 2004 Internal flows of dense gases. Acta Mech. 169, 123143.CrossRefGoogle Scholar
Kluwick, A. & Wrabel, M. 2004 Shock boundary layer interactions in dense gases. PAMM 4, 444445.CrossRefGoogle Scholar
Lambrakis, K. C. & Thompson, P. A. 1972 Existence of real fluids with a negative fundamental derivative gamma . Phys. Fluids 15, 933935.CrossRefGoogle Scholar
Martin, J. J. & Hou, Y. C. 1955 Development of an equation of state for gases. AIChE J. 1, 142151.CrossRefGoogle Scholar
Monaco, J. F., Cramer, M. S. & Watson, L. T. 1997 Supersonic flows of dense gases in cascade configurations. J. Fluid Mech. 330, 3159.CrossRefGoogle Scholar
Morren, S. H. 1991 Transonic aerodynamics of dense gases. Master's thesis, Engineering Science and Mechanics Department, Virginia Polytechnic Institute and State University, also appeared as NASA TM 103732.Google Scholar
Reid, R. C., Prausnitz, J. M. & Poling, B. E. 1987 The Properties of Gases and Liquids, 4th edn. McGraw-Hill.Google Scholar
Rezgui, A., Cinnella, P. & Lerat, A. 2001 Third-order accurate finite volume schemes for Euler computations on curvilinear meshes. Computers Fluids 30, 875901.CrossRefGoogle Scholar
Roache, P. J. 1998 Verification and Validation in Computational Science and Engineering. Hermosa, Albuquerque, New Mexico.Google Scholar
Rusak, Z. & Wang, C. W. 1997 Transonic flow of dense gases around an airfoil with a parabolic nose. J. Fluid Mech. 346, 121.CrossRefGoogle Scholar
Schlichting, H. & Gersten, K. 2003 Boundary Layer Theory, 8th edn. Springer.Google Scholar
Thompson, P. A. 1971 A fundamental derivative in gas dynamics. Phys. Fluids 14, 18431849.CrossRefGoogle Scholar
Thompson, P. A. & Lambrakis, K. C. 1973 Negative shock waves. J. Fluid Mech. 60, 187208.CrossRefGoogle Scholar
Wang, C. W. & Rusak, Z. 1999 Numerical studies of transonic BZT gas flows around thin airfoils. J. Fluid Mech 396, 109141.CrossRefGoogle Scholar
Wieghardt, K. & Tillman, W. 1952 On the turbulent friction layer for rising pressure. NACA TM 1314.Google Scholar
Wilcox, D. C. 1998 Turbulence modeling for CFD, 2nd edn. DCW Industries.Google Scholar