Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-19T01:14:39.640Z Has data issue: false hasContentIssue false

Interfacial waves in core-annular flow

Published online by Cambridge University Press:  26 April 2006

R. Miesen
Affiliation:
Koninklijke/Shell-Laboratorium, Amsterdam (Shell Research B.V.). Badhuisweg 3, 1031 CM Amsterdam, The Netherlands
G. Beijnon
Affiliation:
Koninklijke/Shell-Laboratorium, Amsterdam (Shell Research B.V.). Badhuisweg 3, 1031 CM Amsterdam, The Netherlands
P. E. M. Duijvestijn
Affiliation:
Koninklijke/Shell-Laboratorium, Amsterdam (Shell Research B.V.). Badhuisweg 3, 1031 CM Amsterdam, The Netherlands
R. V. A. Oliemans
Affiliation:
Koninklijke/Shell-Laboratorium, Amsterdam (Shell Research B.V.). Badhuisweg 3, 1031 CM Amsterdam, The Netherlands
T. Verheggen
Affiliation:
Koninklijke/Shell-Laboratorium, Amsterdam (Shell Research B.V.). Badhuisweg 3, 1031 CM Amsterdam, The Netherlands

Abstract

In this paper we present experiments and an analysis of interfacial waves in core—annular flow; these waves are important for the flow to be stable. The observed wave velocity is about equal to the speed of the fluids near the interface, and the wavelength is 1–10 times the thickness of the annulus. These results are predicted by our analysis, which is valid provided the Reynolds number of the fluid in the annulus, and the ratio of the viscosities of the fluids in the core and the annulus, are large. The theory gives the growth rate of a wave as a function of this ratio, the Reynolds number, the surface tension and the wavenumber. For parameter values of interest, the growth rate is positive for a range wavenumbers which we compare with the experiments. Qualitative agreement between theory and experiment is excellent; quantitative comparison reveals discrepancies for which a possible explanation is the neglect of nonlinear terms.

Type
Research Article
Copyright
© 1992 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Charles, M. E., Govier, G. W. & Hodgson, G. W. 1961. The horizontal pipeline flow of equal density oil-water mixtures. Can. J. Chem. Engng 39, 1736.Google Scholar
Drazin, P. G. & Reid, W. H. 1981. Hydrodynamic Stability. Cambridge University Press.
Frenkel, A. L., Babchin, A. J., Levich, B. G., Shlang, T. & Sivashinsky, G. I. 1987 Annular flows can keep unstable films from breakup: Nonlinear saturation of capillary instability. J. Colloid. Interface Sci. J. Colloid. Interface. 115, 225233.Google Scholar
Goussis, D. A. & Pearlstein, A. J. 1989 Removal of infinite eigenvalues in the generalized matrix eigenvalue problem. J. Comput. Phys. 84, 242246.Google Scholar
Hickox, C. E. 1971 Instability due to viscosity and density stratification in axisymmetric pipe flow. Phys. Fluids 14, 251262.Google Scholar
Hooper, A. P. 1985 Long-wave instability at the interface between two viscous fluids: Thin layer effects. Phys. Fluids 28, 16131618.Google Scholar
Hooper, A. P. & Boyd, W. G. C. 1983 Shear-flow instability at the interface between two viscous fluids. J. Fluid Mech. 128, 507528.Google Scholar
Hooper, A. P. & Boyd, W. G. C. 1987 Shear-flow instability due to a wall and a viscosity discontinuity at the interface. J. Fluid Mech. 178, 201225.Google Scholar
Hooper, A. P. & Grimshaw, R. 1985 Nonlinear instability at the interface between two viscous fluids. Phys. Fluids 28, 3745.Google Scholar
Hu, H. H., Lundgren, T. S. & Joseph, D. D. 1990 Stability of core-annular flow with a small viscosity ratio. Phys. Fluids A 2, 19451954.Google Scholar
Joseph, D. D., Renardy, M. & Renardy, Y. 1984 Instability of the flow of two immiscible liquids with different viscosities in a pipe. J. Fluid Mech. 141, 309317.Google Scholar
Moler, C. B. & Stewart, G. W. 1973 An algorithm for generalized eigenvalue problems. SIAM J. Numer. Anal. 10, 241255.Google Scholar
Oliemans, R. V. A. 1986 The lubricating-film model for core-annular flow. Thesis, Delft University of Technology, Netherlands, 146 p.
Oliemans, R. V. A. & Ooms, G. 1986 Core-annular flow of oil and water through a pipeline. In Multiphase Science and Technology, Vol. 2 (ed G. F. Hewitt, J. M. Delhaye & N. Zuber). Hemisphere.
Ooms, G., Segal, A., Van der Wees, A. J., Meerhoff, R. & Oliemans, R. V. A. 1984 A theoretical model for core-annular flow of a very viscous oil core and a water annulus through a horizontal pipe. Intl J. Multiphase Flow 1, 4160.Google Scholar
Orr, W. M. F. 1907 The stability or instability of the steady motion of a perfect liquid and of a viscous fluid. Proc. R. Irish Acad. A 27, 968; 69138.Google Scholar
Orszag, S. A. 1971 Accurate solution of the Orr-Sommerfeld stability equation. J. Fluid Mech. 50, 689703.Google Scholar
Osborne, E. E. 1960 On pre-conditioning of matrices. J. Assoc. Comput. Mach. 7, 338345.Google Scholar
Papageorgiou, D. T., Maldarelli, C. & Rumschitzki, D. S. 1990 Nonlinear interfacial stability of core-annular film flows. Phys. Fluids A 2, 340352.Google Scholar
Preziosi, L., Chen, K. & Joseph, D. D. 1989 Lubricated pipelining: stability of core-annular flow. J. Fluid Mech. 201, 323356.Google Scholar
Renardy, Y. 1985 Instability at the interface between two sharing fluids in a channel. Phys. Fluids 28, 34413443.Google Scholar
Shlang, T., Sivashinsky, G. I., Babchin, A. J. & Frenkel, A. L. 1985 Irregular wavy flow due to viscous stratification. J. Phys. Paris 46, 863866.Google Scholar
Sommerfeld, A. 1908 Ein betrag zur hydrodynamische erklaerung der turbulenten Fluessig-keitsbewegungen. In Proc. 4th Intl Congress of Mathematicians, Rome, vol. 3, pp. 116124.
Than, P. T., Rosso, F. & Joseph, D. D. 1987 Instability of Poiseuille flow of two immiscible liquids with different viscosities in a channel. Intl J. Engng. Sci. 25, 189204.Google Scholar
Wu, H. L., Duijvestijn, P. E. M., Paterno, J. & Guevera E. 1986 Core-annular flow: A solution to pipeline transportation of heavy crude oils. Rev. Tec. Intevep Venezuela 6, 1722.Google Scholar
Yiantsios, G. Y. & Higgins, B. G. 1988 Linear stability of plane Poiseuille flow of two superposed fluids. Phys. Fluids 31, 32253238.Google Scholar
Yih, C.-S. 1967 Instability due to viscosity stratification. J. Fluid Mech. 27, 337352.Google Scholar