Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T06:09:21.281Z Has data issue: false hasContentIssue false

Immersed granular collapse: from viscous to free-fall unsteady granular flows

Published online by Cambridge University Press:  09 February 2021

Laurent Lacaze*
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS, Toulouse31400, France
Joris Bouteloup
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS, Toulouse31400, France
Benjamin Fry
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS, Toulouse31400, France
Edouard Izard
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS, Toulouse31400, France
*
Email address for correspondence: [email protected]

Abstract

The collapse of a granular column in a liquid is investigated using numerical simulations. From previous experimental studies, it has been established that the dynamics of the collapse is mostly influenced by the Stokes number $St$, comparing grain inertia and viscous fluid dissipation, and the initial volume fraction of the granular column $\phi _i$. However, the full characterization of the collapse in the $(St,\phi _i)$ plane is still missing, restricting its modelling as a physical process for geophysical applications. Only numerical tools can allow the variation over the parameter space $(St,\phi _i)$ that is hardly reachable in experiments as well as a full description of the granular phase that plays a major role in dense granular flows. For this purpose, a dedicated numerical model is used including a discrete element method to resolve the granular phase. The specific objectives of the paper are then twofold: (i) the characterization of the dynamics of the collapse and its final deposit with respect to $(St,\phi _i)$ to complement available experimental data, and (ii) the description of the granular rheology according to these two dimensionless numbers including dilatancy effects. A simple predictive model stems from the obtained results, allowing one to explain the evolution of the final deposit with $(St,\phi _i)$.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balmforth, N.J. & Kerswell, R.R. 2005 Granular collapse in two dimensions. J. Fluid Mech. 538, 399428.CrossRefGoogle Scholar
Baran, O., Ertaş, D., Halsey, T.C., Grest, G.S. & Lechman, J.B. 2006 Velocity correlations in dense gravity-driven granular chute flow. Phys. Rev. E 74 (5), 051302.CrossRefGoogle ScholarPubMed
Barker, T. & Gray, J.M.N.T. 2017 Partial regularisation of the incompressible $\mu ({I})$-rheology for granular flow. J. Fluid Mech. 828, 532.CrossRefGoogle Scholar
Baumgarten, A.S. & Kamrin, K. 2019 A general fluid–sediment mixture model and constitutive theory validated in many flow regimes. J. Fluid Mech. 861, 721764.CrossRefGoogle Scholar
Bougouin, A. & Lacaze, L. 2018 Granular collapse in a fluid: different flow regimes for an initially dense-packing. Phys. Rev. Fluids 3 (6), 064305.CrossRefGoogle Scholar
Cabrera, M. & Estrada, N. 2019 Granular column collapse: analysis of grain-size effects. Phys. Rev. E 99 (1), 012905.CrossRefGoogle ScholarPubMed
Cassar, C., Nicolas, M. & Pouliquen, O. 2005 Submarine granular flows down inclined planes. Phys. Fluids 17 (10), 103301.CrossRefGoogle Scholar
Charru, F., Bouteloup, J., Bonometti, T. & Lacaze, L. 2016 Sediment transport and bedforms: a numerical study of two-phase viscous shear flow. Meccanica 51 (12), 30553065.CrossRefGoogle Scholar
Courrech du Pont, S., Gondret, P., Perrin, B. & Rabaud, M. 2003 Granular avalanches in fluids. Phys. Rev. Lett. 90 (4), 044301.CrossRefGoogle ScholarPubMed
Crosta, G.B., Imposimato, S. & Roddeman, D. 2009 Numerical modeling of 2-D granular step collapse on erodible and nonerodible surface. J. Geophys. Res. 114 (F3).Google Scholar
Da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N. & Chevoir, F. 2005 Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72 (2), 021309.CrossRefGoogle ScholarPubMed
Daerr, A. & Douady, S. 1999 Sensitivity of granular surface flows to preparation. Europhys. Lett. 47 (3), 324.CrossRefGoogle Scholar
Degaetano, M., Lacaze, L. & Phillips, J.C. 2013 The influence of localised size reorganisation on short-duration bidispersed granular flows. Eur. Phys. J. E 36 (4), 36.CrossRefGoogle ScholarPubMed
GDR, MiDi 2004 On dense granular flows. Eur. Phys. J. E 14 (4), 341365.Google Scholar
Girolami, L., Hergault, V., Vinay, G. & Wachs, A. 2012 A three-dimensional discrete-grain model for the simulation of dam-break rectangular collapses: comparison between numerical results and experiments. Granul. Matt. 14 (3), 381392.CrossRefGoogle Scholar
Goldhirsch, I. & Goldenberg, C. 2002 On the microscopic foundations of elasticity. Eur. Phys. J. E 9 (3), 245251.CrossRefGoogle ScholarPubMed
Gondret, P., Lance, M. & Petit, L. 2002 Bouncing motion of spherical particles in fluids. Phys. Fluids 14 (2), 643652.CrossRefGoogle Scholar
Guazzelli, E. & Pouliquen, O. 2018 Rheology of dense granular suspensions. J. Fluid Mech. 852, P1.CrossRefGoogle Scholar
Ionescu, I.R., Mangeney, A., Bouchut, F. & Roche, O. 2015 Viscoplastic modeling of granular column collapse with pressure-dependent rheology. J. Non-Newtonian Fluid Mech. 219, 118.CrossRefGoogle Scholar
Izard, E., Bonometti, T. & Lacaze, L. 2014 Modelling the dynamics of a sphere approaching and bouncing on a wall in a viscous fluid. J. Fluid Mech. 747, 422446.CrossRefGoogle Scholar
Jackson, R. 2000 The Dynamics of Fluidized Particles. Cambridge University Press.Google Scholar
Jing, L., Yang, G.C., Kwok, C.Y. & Sobral, Y.D. 2018 Dynamics and scaling laws of underwater granular collapse with varying aspect ratios. Phys. Rev. E 98 (4), 042901.CrossRefGoogle Scholar
Jing, L., Yang, G.C., Kwok, C.Y. & Sobral, Y.D. 2019 Flow regimes and dynamic similarity of immersed granular collapse: a CFD-DEM investigation. Powder Technol. 345, 532543.CrossRefGoogle Scholar
Jop, P., Forterre, Y. & Pouliquen, O. 2006 A constitutive law for dense granular flows. Nature 441 (7094), 727730.CrossRefGoogle ScholarPubMed
Lacaze, L. & Kerswell, R.R. 2009 Axisymmetric granular collapse: a transient 3D flow test of viscoplasticity. Phys. Rev. Lett. 102 (10), 108305.CrossRefGoogle ScholarPubMed
Lacaze, L., Phillips, J.C. & Kerswell, R.R. 2008 Planar collapse of a granular column: experiments and discrete element simulations. Phys. Fluids 20 (6), 063302.CrossRefGoogle Scholar
Lagrée, P.-Y., Staron, L. & Popinet, S. 2011 The granular column collapse as a continuum: validity of a two-dimensional Navier–Stokes model with a $\mu$ (i)-rheology. J. Fluid Mech. 686, 378408.CrossRefGoogle Scholar
Lajeunesse, E., Mangeney-Castelnau, A. & Vilotte, J.-P. 2004 Spreading of a granular mass on a horizontal plane. Phys. Fluids 16 (7), 23712381.CrossRefGoogle Scholar
Lajeunesse, E., Monnier, J.B. & Homsy, G.M. 2005 Granular slumping on a horizontal surface. Phys. Fluids 17 (10), 103302.CrossRefGoogle Scholar
Lube, G., Huppert, H.E., Sparks, R.S.J. & Freundt, A. 2005 Collapses of two-dimensional granular columns. Phys. Rev. E 72 (4), 041301.CrossRefGoogle ScholarPubMed
Lube, G., Huppert, H.E., Sparks, R.S.J. & Hallworth, M.A. 2004 Axisymmetric collapses of granular columns. J. Fluid Mech. 508, 175199.CrossRefGoogle Scholar
Mangeney, A., Roche, O., Hungr, O., Mangold, N., Faccanoni, G. & Lucas, A. 2010 Erosion and mobility in granular collapse over sloping beds. J. Geophys. Res. 115, F03040.CrossRefGoogle Scholar
Mangeney-Castelnau, A., Bouchut, F., Vilotte, J.-P., Lajeunesse, E., Aubertin, A. & Pirulli, M. 2005 On the use of saint venant equations to simulate the spreading of a granular mass. J. Geophys. Res. 110, B09103.Google Scholar
Maurin, R., Chauchat, J., Chareyre, B. & Frey, P. 2015 A minimal coupled fluid-discrete element model for bedload transport. Phys. Fluids 27 (11), 113302.CrossRefGoogle Scholar
Pähtz, T. & Durán, O. 2018 Universal friction law at granular solid-gas transition explains scaling of sediment transport load with excess fluid shear stress. Phys. Rev. Fluids 3 (10), 104302.CrossRefGoogle Scholar
Pailha, M. & Pouliquen, O. 2009 A two-phase flow description of the initiation of underwater granular avalanches. J. Fluid Mech. 633, 115135.CrossRefGoogle Scholar
Phillips, J.C., Hogg, A.J., Kerswell, R.R. & Thomas, N.H. 2006 Enhanced mobility of granular mixtures of fine and coarse particles. Earth Planet. Sci. Lett. 246 (3-4), 466480.CrossRefGoogle Scholar
Richardson, J.F. & Zaki, W.N. 1954 The sedimentation of a suspension of uniform spheres under conditions of viscous flow. Chem. Engng Sci. 3 (2), 6573.CrossRefGoogle Scholar
Roche, O., Attali, M., Mangeney, A. & Lucas, A. 2011 On the run-out distance of geophysical gravitational flows: insight from fluidized granular collapse experiments. Earth Planet. Sci. Lett. 311 (3–4), 375385.CrossRefGoogle Scholar
Rondon, L., Pouliquen, O. & Aussillous, P. 2011 Granular collapse in a fluid: role of the initial volume fraction. Phys. Fluids 23 (7), 073301.CrossRefGoogle Scholar
Roux, S. & Radjai, F. 1998 Texture-dependent rigid-plastic behavior. In Physics of Dry Granular Media (ed. H.J. Herrmann, J.-P. Hovi & S. Luding), pp. 229–236. Springer.CrossRefGoogle Scholar
Staron, L. & Hinch, E.J. 2005 Study of the collapse of granular columns using two-dimensional discrete-grain simulation. J. Fluid Mech. 545, 127.CrossRefGoogle Scholar
Staron, L. & Hinch, E.J. 2007 The spreading of a granular mass: role of grain properties and initial conditions. Granul. Matt. 9 (3–4), 205217.CrossRefGoogle Scholar
Topin, V., Monerie, Y., Perales, F. & Radjai, F. 2012 Collapse dynamics and runout of dense granular materials in a fluid. Phys. Rev. Lett. 109 (18), 188001.CrossRefGoogle Scholar
Trulsson, M., Andreotti, B. & Claudin, P. 2012 Transition from the viscous to inertial regime in dense suspensions. Phys. Rev. Lett. 109 (11), 118305.CrossRefGoogle ScholarPubMed
Weinhart, T., Thornton, A.R., Luding, S. & Bokhove, O. 2012 Closure relations for shallow granular flows from particle simulations. Granul. Matt. 14 (4), 531552.CrossRefGoogle Scholar
Zenit, R. 2005 Computer simulations of the collapse of a granular column. Phys. Fluids 17 (3), 031703.CrossRefGoogle Scholar
Zhang, D.Z. & Prosperetti, A. 1997 Momentum and energy equations for disperse two-phase flows and their closure for dilute suspensions. Intl J. Multiphase Flow 23 (3), 425453.CrossRefGoogle Scholar
Supplementary material: PDF

Lacaze et al. supplementary material

Electronic supplement

Download Lacaze et al. supplementary material(PDF)
PDF 7.9 MB