Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T01:54:24.411Z Has data issue: false hasContentIssue false

Ignition, flame structure and near-wall burning in transverse hydrogen jets in supersonic crossflow

Published online by Cambridge University Press:  03 September 2015

Mirko Gamba*
Affiliation:
Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109, USA
M. Godfrey Mungal
Affiliation:
Mechanical Engineering Department, Stanford University, Stanford, CA 94305, USA School of Engineering, Santa Clara University, Santa Clara, CA 95053, USA
*
Email address for correspondence: [email protected]

Abstract

We have investigated the properties of transverse sonic hydrogen jets in high-temperature supersonic crossflow at jet-to-crossflow momentum flux ratios $J$ between 0.3 and 5.0. The crossflow was held fixed at a Mach number of 2.4, 1400 K and 40 kPa. Schlieren and $\text{OH}^{\ast }$ chemiluminescence imaging were used to investigate the global flame structure, penetration and ignition points; $\text{OH}$ planar laser-induced fluorescence imaging over several planes was used to investigate the instantaneous reaction zone. It is found that $J$ indirectly controls many of the combustion processes. Two regimes for low (${<}1$) and high (${>}3$) $J$ are identified. At low $J$, the flame is lifted and stabilizes in the wake close to the wall possibly by autoignition after some partial premixing occurs; most of the heat release occurs at the wall in regions where $\text{OH}$ occurs over broad regions. At high $J$, the flame is anchored at the upstream recirculation region and remains attached to the wall within the boundary layer where $\text{OH}$ remains distributed over broad regions; a strong reacting shear layer exists where the flame is organized in thin layers. Stabilization occurs in the upstream recirculation region that forms as a consequence of the strong interaction between the bow shock, the jet and the boundary layer. In general, this interaction – which indirectly depends on $J$ because it controls the jet penetration – dominates the fluid dynamic processes and thus stabilization. As a result, the flow field may be characterized by a flame structure characteristic of multiple interacting combustion regimes, from (non-premixed) flamelets to (partially premixed) distributed reaction zones, thus requiring a description based on a multi-regime combustion formulation.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, M. G., Parker, T. E., Reineeke, W. G., Legner, H. H., Foutter, R. R., Rawlins, W. T. & Davis, S. J. 1993 Fluorescence imaging of OH and NO in a model supersonic combustor. AIAA J. 31, 3, 505512.CrossRefGoogle Scholar
Ayoola, B. O., Balachandran, R., Frank, J. H., Mastorakos, E. & Kaminski, C. F. 2006 Spatially resolved heat release rate measurements in turbulent premixed flames. Combust. Flame 144, 116.Google Scholar
Balakrishnan, G. & Williams, F. A. 1994 Turbulent combustion regimes for hypersonic propulsion employing hydrogen–air diffusion flames. J. Propul. Power 10, 3, 434437.Google Scholar
Barlow, R. S., Dibble, R. W., Chen, J.-Y. & Lucht, R. P. 1990 Effect of Damköhler number on superequilibrium OH concentration in turbulent nonpremixed jet flames. Combust. Flame 82, 235251.Google Scholar
Ben-Yakar, A. & Hanson, R. K. 1998 Experimental investigation of flame-holding capability of hydrogen transverse jet in supersonic cross-flow. Proc. Combust. Inst. 27, 21732180.Google Scholar
Ben-Yakar, A., Kamel, M., Morris, C. & Hanson, R. K.1998 Hypersonic combustion and mixing studies using simultaneous OH PLIF and Schlieren imaging. In 36th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV.Google Scholar
Ben-Yakar, A., Mungal, M. G. & Hanson, R. K. 2006 Time evolution and mixing characteristics of hydrogen and ethylene transverse jets in supersonic crossflows. Phys. Fluids 18, 026101.Google Scholar
Bier, K., Kappler, G. & Wilhelmi, H. 1971 Influence of the injection conditions on the ignition of methane and hydrogen in a hot Mach 2 air stream. AIAA J. 9, 9, 18651866.CrossRefGoogle Scholar
Billig, F. S., Orth, R. C. & Lasky, M. 1971 A unified analysis of gaseous jet penetration. AIAA J. 9, 6, 10481058.CrossRefGoogle Scholar
Buch, K. A. & Dahm, W. J. A. 1996 Experimental study of the fine scale structure of the conserved scalar mixing in turbulent shear flow. I $Sc\geqslant 1$ . J. Fluid Mech. 317, 2171.Google Scholar
Buch, K. A. & Dahm, W. J. A. 1998 Experimental study of the fine scale structure of the conserved scalar mixing in turbulent shear flow. II $Sc\approx 1$ . J. Fluid Mech. 364, 129.Google Scholar
Clemens, N. T. 2002 Encyclopedia of imaging science and technology. In Flow Imaging, pp. 390419. Wiley.Google Scholar
Clemens, N. T., Paul, P. H. & Mungal, M. G. 1997 The structure of OH fields in high Reynolds number turbulent jet diffusion flames. Combust. Sci. Technol. 129, 1, 165184.Google Scholar
Cohen, L. S., Coulter, L. J. & Egan, W. J. 1971 Penetration and mixing of multiple gas jets subject to a crossflow. AIAA J. 9, 4, 718724.Google Scholar
Cortelezzi, L. & Karagozian, A. R. 2001 On the formation of the counter-rotating vortex pair in transverse jets. J. Fluid Mech. 446, 347373.Google Scholar
Crist, S., Sherman, P. M. & Glass, D. R. 1966 Study of the highly underexpanded sonic jet. AIAA J. 4, 1, 6871.Google Scholar
Donbar, J. M., Gruber, M. R., Jackson, T. A., Carter, C. D. & Mathur, T. 2000 OH planar laser-induced fluorescence imaging of hydrocarbon-fueled scramjet combustor. Proc. Combust. Inst. 28, 1, 679687.Google Scholar
Doster, J. C., King, P. I., Gruber, M. R., Carter, C. D., Ryan, M. D. & Hsu, K.-Y. 2009 In-stream hypermixer fueling pylons in supersonic flow. J. Propul. Power 25, 4, 885901.Google Scholar
Dowdy, M. W. & Newton, J. F.1963 Investigation of liquid and gaseous secondary injection phenomena on a flat plate with $M=2.01$ to $M=4.54$ . JPL Tech. Rep. No. 32-542.Google Scholar
Everett, D. E., Woodmansee, M. A., Dutton, J. C. & Morris, M. J. 1998 Wall pressure measurements for a sonic jet injected transversely into a supersonic crossflow. J. Propul. Power 14, 6, 861868.Google Scholar
Ferri, A. 1973 Mixing-controlled supersonic combustion. Annu. Rev. Fluid Mech. 5, 301338.Google Scholar
Fric, T. F. & Roshko, A. 1994 Vortical structure in the wake of a transverse jet. J. Fluid Mech. 279, 147.Google Scholar
Gamba, M., Terrapon, V. E., Saghafian, A., Mungal, M. G. & Pitsch, H. 2011 Assessment of the combustion characteristics of hydrogen transverse jets in supersonic crossflow. In Annual Research Briefs, Center for Turbulence Research, Stanford University, pp. 259272.Google Scholar
Gauba, G., Klavuhn, K. G., McDaniel, J. C., Victor, K. G., Krauss, R. H. & Whitehurst III, R. B. 1997 OH planar laser-induced fluorescence velocity measurements in a supersonic combustor. AIAA J. 35, 4, 678686.Google Scholar
Génin, F. & Menon, S. 2010 Dynamics of sonic jet injection into supersonic crossflow. J. Turbul. 11, 4, 130.Google Scholar
Grout, R., Gruber, A., Yoo, C. & Chen, J. 2011 Direct numerical simulation of flame stabilization downstream of a transverse fuel jet in cross-flow. Proc. Combust. Inst. 33, 1, 16291637.Google Scholar
Gruber, M. R. & Goss, L. P. 1999 Surface pressure measurements in supersonic transverse injection flowfields. J. Propul. Power 15, 5, 633641.Google Scholar
Gruber, M. R., Nejad, A. S., Chen, T. H. & Dutton, J. C. 1995 Mixing and penetration studies of sonic jets in a Mach 2 freestream. J. Propul. Power 11, 2, 315323.Google Scholar
Gruber, M. R., Nejad, A. S., Chen, T. H. & Dutton, J. C. 1996 Bow shock/jet interaction in compressible transverse injection flowfields. AIAA J. 34, 10, 21912193.CrossRefGoogle Scholar
Gruber, M. R., Nejad, A. S., Chen, T. H. & Dutton, J. C. 1997a Compressibility effects in supersonic transverse injection flowfields. Phys. Fluids 9, 5, 14481461.CrossRefGoogle Scholar
Gruber, M. R., Nejad, A. S., Chen, T. H. & Dutton, J. C. 1997b Large structure convection velocity measurements in compressible transverse injection flowfields. Exp. Fluids 22, 397407.Google Scholar
Gutmark, E. J., Schadow, K. C. & Yu, K. H. 1995 Mixing enhancement in supersonic free shear flows. Annu. Rev. Fluid Mech. 27, 375417.CrossRefGoogle Scholar
Hartfield, R. J. & Bayley, D. J. 1995 Experimental investigation of angled injection in a compressible flow. J. Propul. 12, 2, 442445.Google Scholar
Hartfield, R. J., Hollo, S. D. & McDaniel, J. C. 1994 Experimental investigation of a supersonic swept ramp injector using laser-induced iodine fluorescence. J. Propul. Power 10, 1, 129135.Google Scholar
Hasselbrink, E. F. & Mungal, M. G. 2001 Transverse jets and jet flames. Part 1. Scaling laws for strong transverse jets. J. Fluid Mech. 443, 125.Google Scholar
Heltsley, W. N., Snyder, J. A., Cheung, C. C., Mungal, M. G. & Hanson, R. K. 2007 Combustion stability regimes of hydrogen jets in supersonic crossflow. In 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cincinnati, OH, July 8–11, AIAA-2007-5401.Google Scholar
Heltsley, W. N., Snyder, J. A., Houle, A. J., Davidson, D., Mungal, M. G. & Hanson, R. K. 2006 Design and characterization of the Stanford 6 inch expansion tube. In 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 9–12 July, AIAA-2006-4443.Google Scholar
Hersch, M., Povinelli, L. A. & Povinelli, F. P.1970 Optical study of sonic and supersonic jet penetration from a flat plate into a Mach 2 airstream. NASA Tech. Rep. TN D-5717.Google Scholar
Hollo, S. D., McDaniel, J. C. & Hartfield, R. J. 1994 Quantitative investigation of compressible mixing: staged transverse injection into Mach 2 flow. AIAA J. 32, 3, 528534.Google Scholar
Hong, Z., Davidson, D. & Hanson, R. 2011 An improved H2/O2 mechanism based on recent shock tube/laser absorption measurements. Combust. Flame 158, 633644.Google Scholar
Hsu, K.-Y., Carter, C. D., Gruber, M. R., Barhorst, T. & Smith, S. 2010 Experimental study of cavity-strut combustion in supersonic flow. J. Propul. Power 26, 6, 12371246.Google Scholar
Huang, R. & Chang, J. 1994 The stability and visualized flame and flow structures of a combusting jet in cross flow. Combust. Flame 98, 3, 267278.Google Scholar
Huber, P. W., Schexnayder, C. J. & McClinton, C. R.1979 Criteria for self-ignition of supersonic hydrogen–air mixtures. NASA Tech. Rep. TP-1457.Google Scholar
Ingenito, A. & Bruno, C. 2010 Physics and regimes of supersonic combustion. AIAA J. 48, 3, 515525.Google Scholar
Karagozian, A. R. 2010 Transverse jets and their control. Prog. Energy Combust. Sci. 36, 5, 531553.Google Scholar
Kawai, S. & Lele, S. K. 2010 Large-eddy simulation of jet mixing in supersonic crossflows. AIAA J. 48, 9, 20632083.Google Scholar
Kelso, R. M., Lim, T. T. & Perry, A. E. 1996 An experimental study of round jets in cross-flow. J. Fluid Mech. 306, 111144.Google Scholar
Kelso, R. M. & Smits, A. J. 1995 Horseshoe vortex systems resulting from the interaction between a laminar boundary layer and a transverse jet. Phys. Fluids 7, 153158.Google Scholar
Kobayashi, K., Bowersox, R. D. W., Srinivasan, R., Carter, C. D. & Hsu, K.-Y. 2007 Flowfield studies of diamond-shaped fuel injector in a supersonic flow. J. Propul. Power 23, 6, 11681176.Google Scholar
Kolla, H., Grout, R. W., Gruber, A. & Chen, J. H. 2012 Mechanisms of flame stabilization and blowout in a reacting turbulent hydrogen jet in cross-flow. Combust. Flame 159, 8, 27552766.Google Scholar
Kothnur, P. S. & Clemens, N. T. 2005 Effects of unsteady strain rate on scalar dissipation structures in turbulent planar jets. Phys. Fluids 17, 125105.Google Scholar
Lawn, C. J. 2009 Lifted flames on fuel jets in co-flowing air. Prog. Energy Combust. Sci. 35, 130.CrossRefGoogle Scholar
Lee, J. G. & Santavicca, D. A. 2003 Experimental diagnostics for the study of combustion instabilities in lean premixed combustors. J. Propul. Power 19, 5, 735750.Google Scholar
Lee, M. P., McMillin, B. K., Palmer, J. L. & Hanson, R. K. 1992 Planar fluorescence imaging of a transverse jet in a supersonic crossflow. AIAA J. 8, 4, 729735.Google Scholar
Lin, K.-C., Ryan, M., Carter, C., Gruber, M. & Raffoul, C. 2010 Raman scattering measurements of gaseous ethylene jets in Mach 2 supersonic crossflow. J. Propul. Power 26, 3, 503513.Google Scholar
Lyons, K. M. 2007 Toward an understanding of the stabilization mechanisms of lifted turbulent jet flames: experiments. Prog. Energy Combust. Sci. 33, 211231.Google Scholar
Mahesh, K. 2013 The interaction of jets with crossflow. Annu. Rev. Fluid Mech. 45, 379407.Google Scholar
Margason, R. J. 1993 Fifty years of jet in crossflow research. In AGARD Conference Proceeding.Google Scholar
McClinton, C. R.1974 Effect of ratio of wall boundary layer thickness to jet diameter on mixing of a normal hydrogen jet in a supersonic stream. NASA TM X-3030.Google Scholar
McDaniel, J. C. & Graves, J. 1988 Laser-induced-fluorescence visualization of transverse gaseous injection in a nonreaction supersonic combustor. J. Propul. 4, 6, 591597.Google Scholar
McMillin, B. K., Seitzman, J. M. & Hanson, R. K. 1994 Comparison of NO and OH planar fluorescence temperature measurements in scramjet model flowfields. AIAA J. 32, 10, 19451952.Google Scholar
Micka, D. J. & Driscoll, J. F. 2012 Stratified jet flames in a heated (1390k) air cross-flow with autoignition. Combust. Flame 159, 3, 12051214.Google Scholar
Mitani, T., Chinzei, N. & Kanda, T. 2001 Reaction and mixing-controlled combustion in scramjet engines. J. Propul. Power 17, 308314.CrossRefGoogle Scholar
Örley, F., Gamba, M., Adams, N. A. & Iaccarino, G. 2012 A study of expansion tube gas flow conditions for scramjet combustor model testing. In 42nd AIAA Fluid Dynamics Conference and Exhibit, AIAA-2012-3264.Google Scholar
Örley, F., Strand, C. L., Miller, V. A., Gamba, M. & Iaccarino, G. 2011 A study of expansion tube gas flow conditions for scramjet combustor model testing. In Annual Research Briefs, Center for Turbulence Research, Stanford University, pp. 285296.Google Scholar
Papamoschou, D. & Hubbard, D. G. 1993 Visual observations of supersonic transverse jets. Exp. Fluids 14, 468476.Google Scholar
Peters, N. 1984 Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci. 10, 319329.Google Scholar
Peterson, D. M. & Candler, G. V. 2010 Hybrid Reynolds-averaged and large-eddy simulation of normal injection into a supersonic crossflow. J. Propul. Power 26, 3, 533544.Google Scholar
Pitsch, H., Chen, M. & Peters, N. 1998 Unsteady flamelet modeling of turbulent hydrogen–air diffusion flames. Proc. Combust. Inst. 27, 10571064.Google Scholar
Portz, R. & Segal, C. 2006 Penetration of gaseous jets in supersonic flows. AIAA J. 44, 10, 24262429.Google Scholar
Povinelli, F. P. & Povinelli, L. A.1971 Correlation of secondary sonic and supersonic gaseous jet penetration into supersonic crossflows. NASA Tech. Rep. TN D-6370.Google Scholar
Rasmussen, C. C., Dhanuka, S. K. & Driscoll, J. F. 2007 Visualization of flameholding mechanisms in a supersonic combustor using PLIF. Proc. Combust. Inst. 31, 2, 25052512.Google Scholar
Rasmussen, C. C., Driscoll, J. F., Hsu, K.-Y., Donbar, J. M., Gruber, M. R. & Carter, C. D. 2005 Stability limits of cavity-stabilized flames in supersonic flow. Proc. Combust. Inst. 30, 28252833.Google Scholar
Rogers, R. C.1971a Mixing of hydrogen injected from multiple injectors normal to a supersonic airstream. NASA Tech. Rep. TN D-6476.Google Scholar
Rogers, R. C.1971b A study of the mixing of hydrogen injected normal to a supersonic airstream. NASA Tech. Rep. TN D-6114.Google Scholar
Rothstein, A. D.1992 A study of the normal injection of hydrogen into a heated supersonic flow using planar laser-induced fluorescence. PhD thesis, Massachusetts Institute of Technology.Google Scholar
Rothstein, A. D. & Wantuck, P. J. 1992 A study of normal injection of hydrogen into a heated supersonic flow using planar laser-induced fluorescence. In 28th Joint Propulsion Conference and Exhibit, AIAA-1992-3423.Google Scholar
Ryan, M., Gruber, M. R., Carter, C. D. & Mathur, T. 2009 Planar laser-induced fluorescence imaging of OH in a supersonic combustor fueled with ethylene and methane. Proc. Combust. Inst. 32, 2, 24292436.Google Scholar
Santiago, J. G. & Dutton, J. C. 1997 Velocity measurements of a jet injected into a supersonic crossflow. J. Propul. Power 13, 2, 264273.Google Scholar
Schaupp, C., Friedrich, R. & Foysi, H. 2012 Transverse injection of a plane-reacting jet into compressible turbulent channel flow. J. Turbul. 13, no. 24.Google Scholar
Schetz, J. A. & Billig, F. S. 1966 Penetration of gaseous jets injected into a supersonic stream. J. Spacecr. 3, 11, 16581665.CrossRefGoogle Scholar
Schetz, J. A., Hawkins, P. F. & Lehman, H. 1967 Structure of highly underexpanded transverse jets in a supersonic stream. AIAA J. 5, 5, 882884.Google Scholar
Seiner, J. M., Dash, S. M. & Kenzakowski, D. C. 2001 Historical survey on enhanced mixing in scramjet engines. J. Propul. Power 17, 6, 12731286.Google Scholar
Seitzman, J. M., Ungut, A., Paul, P. H. & Hanson, R. K. 1990 Imaging and characterization of OH structures in a nonpremixed turbulent flame. Proc. Combust. Inst. 23, 637644.Google Scholar
Smith, S. H. & Mungal, M. G. 1998 Mixing, structure and scaling of the jet in crossflow. J. Fluid Mech. 357, 83122.Google Scholar
Su, L. & Mungal, M. G. 2004 Simultaneous measurements of scalar and velocity field evolution in turbulent crossflowing jets. J. Fluid Mech. 513, 145.Google Scholar
Sullivan, R., Wilde, B., Noble, D. R., Seitzman, J. M. & Lieuwen, T. C. 2014 Time-averaged characteristics of a reacting fuel jet in vitiated cross-flow. Combust. Flame 161, 7, 17921803.Google Scholar
Thayer, W. J.1971 The two-dimensional separated flow region upstream of inert and chemically reactive transverse jets. Tech. Rep. D1-82-1066. Flight Sci. Lab., Boeing Sci. Res. Lab.Google Scholar
Torrence, M. G.1971 Effect of injectant molecular weight on mixing of a normal jet in a Mach 4 airstream. NASA Tech. Rep. TN D-6061.Google Scholar
Trimpi, R. L.1962 A preliminary theoretical study of the expansion tube, a new device for producing high-enthalpy short-duration hypersonic gas flows. NASA Tech. Rep. TR R-133.Google Scholar
Tsurikov, M. S.2002 Experimental investigation of the fine scale structure in turbulent gas-phase jet flows. PhD thesis, The University of Texas.Google Scholar
Tsurikov, M. S. & Clemens, N. T. 2002 The structure of dissipative scales in axisymmetric turbulent gas-phase jets. In AIAA Aerospace Science Meeting, AIAA-2002-0164.Google Scholar
VanLerberghe, W. M., Santiago, J. G., Dutton, J. C. & Lucht, R. P. 2000 Mixing of a sonic transverse jet injected into a supersonic flow. AIAA J. 38, 3, 470479.Google Scholar
Vergine, F., Maddalena, L., Miller, V. & Gamba, M. 2015 Supersonic combustion of pylon injected hydrogen in high-enthalpy flow with imposed vortex dynamics. J. Propul. Power 31, 1, 89103.Google Scholar
Wang, G. & Clemens, N. T. 2004 Effects of imaging system blur on measurements of flow scalars and scalar gradients. Exp. Fluids 37, 194205.Google Scholar
White, F. M. 1991 Viscous Fluid Flow. McGraw-Hill.Google Scholar
Yoshida, A. & Tsuji, H. 1977 Supersonic combustion of hydrogen in vitiated airstream using transverse injection. AIAA J. 15, 4, 463464.Google Scholar