Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T19:39:55.486Z Has data issue: false hasContentIssue false

Higher-order statistics and intermittency of a two-fluid Hall–Vinen–Bekharevich–Khalatnikov quantum turbulent flow

Published online by Cambridge University Press:  02 May 2023

Z. Zhang
Affiliation:
Université Rouen Normandie, CNRS, LMRS UMR 6085, F-76000 Rouen, France
I. Danaila
Affiliation:
Université Rouen Normandie, CNRS, LMRS UMR 6085, F-76000 Rouen, France
E. Lévêque
Affiliation:
Université Lyon, CNRS, École Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon I, Laboratoire de Mécanique des Fluides et d'Acoustique UMR 5509, F-69134 Ecully CEDEX, France
L. Danaila*
Affiliation:
Université Rouen Normandie, UNICAEN, CNRS, M2C UMR 6143, F-76000 Rouen, France
*
Email address for correspondence: [email protected]

Abstract

The Hall–Vinen–Bekharevich–Khalatnikov (HVBK) model is widely used to numerically study quantum turbulence in superfluid helium. Based on the two-fluid model of Tisza and Landau, the HVBK model describes the normal (viscous) and superfluid (inviscid) components of the flow using two Navier–Stokes type of equations, coupled through a mutual friction force term. We derive transport equations for the third-order moments for each component of velocity involving the fourth-order moments, which are classical probes for internal intermittency at any scale, and revealing the probability of rare and strong fluctuations. Budget equations are assessed through direct numerical simulations of the HVBK flow. We simulate a forced homogeneous isotropic turbulent flow with Reynolds number of the normal fluid (based on Taylor's microscale) close to 100. Values from 0.1 to 10 are considered for the ratio between the normal and superfluid densities. For these flows, an inertial range is not discernible and the restricted scaling range approach is used to take into account the finite Reynolds number (FRN) effect. We analyse the importance of each term in budget equations and emphasize their role in energy exchange between normal and superfluid components. Some interesting features are observed: (i) transport and pressure-related terms are dominant, similarly to single-fluid turbulence; and (ii) the mathematical signature of the FRN effect is weak despite the low value of the Reynolds number. The flatness of the velocity derivatives is finally studied through the transport equations and their limit for very small scales, and it is shown to gradually increase for lower and lower temperatures, for both normal fluid and superfluid. This similarity highlights the strong locking of the two fluids. The flatness factors are also found in reasonable agreement with classical turbulence.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abid, M., Huepe, C., Metens, S., Nore, C., Pham, C., Tuckerman, L. & Brachet, M.E. 2003 Gross–Pitaevskii dynamics of Bose–Einstein condensates and superfluid turbulence. Fluid Dyn. Res. 33 (5–6), 509544.CrossRefGoogle Scholar
Baggaley, A.W., Barenghi, C.F., Shukurov, A. & Sergeev, Y.A. 2012 Coherent vortex structures in quantum turbulence. Europhys. Lett. 98 (2), 26002.CrossRefGoogle Scholar
Balibar, S. 2017 Laszlo Tisza and the two-fluid model of superfluidity. C. R. Phys. 18 (9), 586591.CrossRefGoogle Scholar
Barenghi, C.F., Donnelly, R.J. & Vinen, W.F. 1983 Friction on quantized vortices in helium II. A review. J. Low Temp. Phys. 52, 189247.CrossRefGoogle Scholar
Barenghi, C.F., L'vov, V.S. & Roche, P.-E. 2014 a Experimental, numerical, and analytical velocity spectra in turbulent quantum fluid. Proc. Natl Acad. Sci. USA 111 (Suppl. 1), 46834690.CrossRefGoogle ScholarPubMed
Barenghi, C.F., Skrbek, L. & Sreenivasan, K.R. 2014 b Introduction to quantum turbulence. Proc. Natl Acad. Sci. USA 111, 46474652.CrossRefGoogle ScholarPubMed
Batchelor, G.K. & Townsend, A.A. 1949 The nature of turbulent motion at large wave-numbers. Proc. R. Soc. Lond. A 199, 238255.Google Scholar
Biferale, L., Khomenko, D., L'vov, V.S., Pomyalov, A., Procaccia, I. & Sahoo, G. 2018 Turbulent statistics and intermittency enhancement in coflowing superfluid $^{4}\mathrm {He}$. Phys. Rev. Fluids 3, 024605.CrossRefGoogle Scholar
Boschung, J., Hennig, F., Denker, D., Pitsch, H. & Hill, R.J. 2017 Analysis of structure function equations up to the seventh order. J. Turbul. 18 (11), 10011032.CrossRefGoogle Scholar
Boué, L., L'vov, V.S., Nagar, Y., Nazarenko, S.V., Pomyalov, A. & Procaccia, I. 2015 Energy and vorticity spectra in turbulent superfluid $^{4}\mathrm {He}$ from ${T}=0$ to $T_{{\lambda }}$. Phys. Rev. B 91, 144501.CrossRefGoogle Scholar
Boué, L., L'vov, V.S., Pomyalov, A. & Procaccia, I. 2013 Enhancement of intermittency in superfluid turbulence. Phys. Rev. Lett. 110, 014502.CrossRefGoogle ScholarPubMed
Bradley, D.I., Fisher, S.N., Guénault, A.M., Haley, R.P., O'Sullivan, S., Pickett, G.R. & Tsepelin, V. 2008 Fluctuations and correlations of pure quantum turbulence in superfluid $^{3}\mathrm {He}- \mathrm {B}$. Phys. Rev. Lett. 101 (4), 065302.CrossRefGoogle Scholar
Djenidi, L., Antonia, R.A. & Danaila, L. 2017 Self-preservation relation to the Kolmogorov similarity hypotheses. Phys. Rev. Fluids 2, 054606.CrossRefGoogle Scholar
Donnelly, R.J. (Ed.) 1991 Quantized Vortices in Helium II. Cambridge University Press.Google Scholar
Donnelly, R.J. 2009 The two-fluid theory and second sound in liquid helium. Phys. Today 62 (10), 3439.CrossRefGoogle Scholar
Galantucci, L., Baggaley, A.W., Barenghi, C.F. & Krstulovic, G. 2020 A new self-consistent approach of quantum turbulence in superfluid helium. Eur. Phys. J. Plus 135 (7), 547.CrossRefGoogle Scholar
Galantucci, L., Krstulovic, G. & Barenghi, C.F. 2023 Friction-enhanced lifetime of bundled quantum vortices. Phys. Rev. Fluids 8, 014702.CrossRefGoogle Scholar
Gauding, M., Danaila, L. & Varea, E. 2017 High-order structure functions for passive scalar fed by a mean gradient. Intl J. Heat Fluid Flow 67, 8693.CrossRefGoogle Scholar
Gotoh, T. & Nakano, T. 2003 Role of pressure in turbulence. J. Stat. Phys. 113, 855875.CrossRefGoogle Scholar
Hall, H.E. & Vinen, W.F. 1956 The rotation of liquid helium II: experiments on the propagation of second sound in uniformly rotating helium II. Proc. R. Soc. Lond. A 238, 204214.Google Scholar
Halperin, B. & Tsubota, M. (Eds) 2009 Quantum Turbulence. Progress in Low Temperature Physics, vol. 16. Springer.CrossRefGoogle Scholar
Henderson, K.L. & Barenghi, C.F. 2004 Superfluid Couette flow in an enclosed annulus. Theor. Comput. Fluid Dyn. 18 (2), 183196.CrossRefGoogle Scholar
Hill, R. 2001 Equations relating structure functions of all orders. J. Fluid Mech. 434, 379388.CrossRefGoogle Scholar
Hill, R. & Boratav, O. 2001 Next-order structure function equations. Phys. Fluids 13, 276283.CrossRefGoogle Scholar
Ishihara, T., Gotoh, T. & Kaneda, Y. 2009 Study of high-Reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech. 41 (1), 165180.CrossRefGoogle Scholar
Ishihara, T., Kaneda, Y., Yokokawa, M., Itakura, K. & Uno, A. 2007 Small-scale statistics in high-resolution direct numerical simulation of turbulence: Reynolds number dependence of one-point velocity gradient statistics. J. Fluid Mech. 592, 335366.CrossRefGoogle Scholar
Jou, D., Mongiovì, M.S. & Sciacca, M. 2011 Hydrodynamic equations of anisotropic, polarized and inhomogeneous superfluid vortex tangles. Physica D 240 (3), 249258.CrossRefGoogle Scholar
Khalatnikov, I.M. 1965 An Introduction to the Theory of Superfluidity. Benjamin.Google Scholar
Kobayashi, M., Parnaudeau, P., Luddens, F., Lothodé, C., Danaila, L., Brachet, M. & Danaila, I. 2021 Quantum turbulence simulations using the Gross–Pitaevskii equation: high-performance computing and new numerical benchmarks. Comput. Phys. Commun. 258, 107579.CrossRefGoogle Scholar
Kolmogorov, A.N. 1941 a Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32 (1), 1618.Google Scholar
Kolmogorov, A.N. 1941 b The local structure of turbulence in incompressible viscous fluids for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30 (4), 301305.Google Scholar
Kolmogorov, A.N. 1962 A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13 (1), 8285.CrossRefGoogle Scholar
Krstulovic, G. 2016 Grid superfluid turbulence and intermittency at very low temperature. Phys. Rev. E 93, 063104.CrossRefGoogle ScholarPubMed
Landau, L. 1941 Theory of the superfluidity of helium II. Phys. Rev. 60 (4), 356358.CrossRefGoogle Scholar
Lipniacki, T. 2006 Dynamics of superfluid $^{4}\textrm {He}$: two-scale approach. Eur. J. Mech. (B/Fluids) 25 (4), 435458.CrossRefGoogle Scholar
Lvov, V., Nazarenko, S. & Skrbek, L. 2006 Energy spectra of developed turbulence in helium superfluids. J. Low Temp. Phys. 145, 125142.CrossRefGoogle Scholar
Maurer, J. & Tabeling, P. 1998 Local investigation of superfluid turbulence. Europhys. Lett. 43 (1), 2934.CrossRefGoogle Scholar
Mongiovi, M.S., Jou, D. & Sciacca, M. 2018 Non-equilibrium thermodynamics, heat transport and thermal waves in laminar and turbulent superfluid helium. Phys. Rep. 726, 171.CrossRefGoogle Scholar
Nemirovskii, S.K. 2013 Quantum turbulence: theoretical and numerical problems. Phys. Rep. 524, 85202.CrossRefGoogle Scholar
Nemirovskii, S.K. 2020 On the closure problem of the coarse-grained hydrodynamics of turbulent superfluids. J. Low Temp. Phys. 201, 254268.CrossRefGoogle Scholar
Nore, C., Abid, M. & Brachet, M.E. 1997 Decaying Kolmogorov turbulence in a model of superflow. Phys. Fluids 9 (9), 26442669.CrossRefGoogle Scholar
Roberts, P.H. & Donnelly, R.J. 1974 Superfluid mechanics. Annu. Rev. Fluid Mech. 6 (1), 179225.CrossRefGoogle Scholar
Roche, P.-E., Barenghi, C.F. & Lévêque, E. 2009 Quantum turbulence at finite temperature: the two-fluids cascade. Eur. Phys. Lett. 87, 54006.CrossRefGoogle Scholar
Roche, P.-E., Diribarne, P., Didelot, T., Français, O., Rousseau, L. & Willaime, H. 2007 Vortex density spectrum of quantum turbulence. Europhys. Lett. 77 (6), 66002.CrossRefGoogle Scholar
Rusaouen, E., Chabaud, B., Salort, J. & Roche, P.-E. 2017 Intermittency of quantum turbulence with superfluid fractions from $0\,\%$ to $96\,\%$. Phys. Fluids 29, 105108.CrossRefGoogle Scholar
Salort, J., Baudet, C., Castaing, B., Chabaud, B. & Daviaud, F. 2010 a The rotation of liquid helium II: experiments on the propagation of second sound in uniformly rotating helium II. Phys. Fluids 22, 125102.CrossRefGoogle Scholar
Salort, J., Baudet, C., Castaing, B., Chabaud, B., Daviaud, F., Didelot, T., Diribarne, P., Dubrulle, B., Gagne, Y., Gauthier, F., et al. 2010 b Turbulent velocity spectra in superfluid flows. Phys. Fluids 22 (12), 125102.CrossRefGoogle Scholar
Salort, J., Chabaud, B., Lévêque, E. & Roche, P.-E. 2012 Energy cascade and the four-fifths law in superfluid turbulence. Eur. Phys. Lett. 97, 34006.CrossRefGoogle Scholar
Sasa, N., Kano, T., Machida, M., Lvov, V., Rudenko, O. & Tsubota, M. 2011 Energy spectra of quantum turbulence: large-scale simulation and modeling. Phys. Rev. B 84, 054525.CrossRefGoogle Scholar
She, Z.-S. & Lévêque, E. 1994 Universal scaling laws in fully developed turbulence. Phys. Rev. Lett. 72 (3), 336339.CrossRefGoogle ScholarPubMed
Shi, J. 2021 Qian Jian (1939–2018) and his contribution to small-scale turbulence studies. Phys. Fluids 33 (4), 041301.CrossRefGoogle Scholar
Shukla, V. & Pandit, R. 2016 Multiscaling in superfluid turbulence: a shell-model study. Phys. Rev. E 94, 043101.CrossRefGoogle ScholarPubMed
Skrbek, L. & Sreenivasan, K.R. 2012 a Developed quantum turbulence. Phys. Fluids 24, 011301.CrossRefGoogle Scholar
Skrbek, L. & Sreenivasan, K.R. 2012 b How similar is quantum turbulence to classical turbulence? In Ten Chapters in Turbulence (ed. P.A. Davidson, Y. Kaneda & K.R. Sreenivasan), p. 405. Cambridge University Press.CrossRefGoogle Scholar
Tang, S.L., Antonia, R.A., Djenidi, L., Danaila, L. & Zhou, Y. 2017 Finite Reynolds number effect on the scaling range behavior of turbulent longitudinal velocity structure functions. J. Fluid Mech. 820, 341369.CrossRefGoogle Scholar
Tang, S.L., Antonia, R.A., Djenidi, L., Danaila, L. & Zhou, Y. 2018 Reappraisal of the velocity derivative flatness factor in various turbulent flows. J. Fluid Mech. 847, 244265.CrossRefGoogle Scholar
Tisza, L. 1938 Transport phenomena in helium II. Nature 141, 913.CrossRefGoogle Scholar
Townsend, A.A. 1951 On the fine-scale structure of turbulence. Proc. R. Soc. Lond. A 208 (1095), 534542.Google Scholar
Tsubota, M., Fujimoto, K. & Yui, S. 2017 Numerical studies of quantum turbulence. J. Low Temp. Phys. 188, 119189.CrossRefGoogle Scholar
Vinen, W.F. & Niemela, J.J. 2002 Quantum turbulence. J. Low Temp. Phys. 128, 167231.CrossRefGoogle Scholar
Yakhot, V. 2003 Pressure–velocity correlations and scaling exponents in turbulence. J. Fluid Mech. 495, 135143.CrossRefGoogle Scholar
Yui, S., Tsubota, M. & Kobayashi, H. 2018 Three-dimensional coupled dynamics of the two-fluid model in superfluid $^{4}\textrm {He}$: deformed velocity profile of normal fluid in thermal counterflow. Phys. Rev. Lett. 120, 155301.CrossRefGoogle Scholar
Zhou, Y. 2021 Turbulence theories and statistical closure approaches. Phys. Rep. 935, 1117.CrossRefGoogle Scholar