Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T01:40:59.717Z Has data issue: false hasContentIssue false

Flow over natural or engineered surfaces: an adjoint homogenization perspective

Published online by Cambridge University Press:  27 August 2019

Alessandro Bottaro*
Affiliation:
Dipartimento di Ingegneria Civile, Chimica e Ambientale, Scuola Politecnica, Università di Genova, Via Montallegro 1, Genova, 16145, Italy Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS, INPT, UPS, Toulouse, 31400, France
*
Email address for correspondence: [email protected]

Abstract

Natural and engineered surfaces are never smooth, but irregular, rough at different scales, compliant, possibly porous, liquid impregnated or superhydrophobic. The correct numerical modelling of fluid flowing through and around them is important but poses problems. For media characterized by a periodic or quasi-periodic microstructure of characteristic dimensions smaller than the relevant scales of the flow, multiscale homogenization can be used to study the effect of the surface, avoiding the numerical resolution of small details. Here, we revisit the homogenization strategy using adjoint variables to model the interaction between a fluid in motion and regularly micro-textured, permeable or impermeable walls. The approach described allows for the easy derivation of auxiliary/adjoint systems of equations which, after averaging, yield macroscopic tensorial properties, such as permeability, elasticity, slip, transpiration, etc. When the fluid in the neighbourhood of the microstructure is in the Stokes regime, classical results are recovered. Adjoint homogenization, however, permits simple extension of the analysis to the case in which the flow displays nonlinear effects. Then, the properties extracted from the auxiliary systems take the name of effective properties and do not depend only on the geometrical details of the medium, but also on the microscopic characteristics of the fluid motion. Examples are shown to demonstrate the usefulness of adjoint homogenization to extract effective tensor properties without the need for ad hoc parameters. In particular, notable results reported herein include:

  1. (i) an original formulation to describe filtration in porous media in the presence of inertial effects;

  2. (ii) the microscopic and macroscopic equations needed to characterize flows through poroelastic media;

  3. (iii) an extended Navier’s condition to be employed at the boundary between a fluid and an impermeable rough wall, with roughness elements which can be either rigid or linearly elastic;

  4. (iv) the microscopic problems needed to define the relevant parameters for a Saffman-like condition at the interface between a fluid and a porous substrate; and

  5. (v) the macroscopic equations which hold at the dividing surface between a free-fluid region and a fluid-saturated poroelastic domain.

Type
JFM Perspectives
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abderrahaman-Elena, N., Fairhall, C. T. & García-Mayoral, R. 2019 Modulation of near-wall turbulence in the transitionally rough regime. J. Fluid Mech. 865, 10421071.10.1017/jfm.2019.41Google Scholar
Abderrahaman-Elena, N. & García-Mayoral, R. 2017 Analysis of anisotropically permeable surfaces for turbulent drag reduction. Phys. Rev. Fluids 2 (11), 114609.10.1103/PhysRevFluids.2.114609Google Scholar
Achdou, Y., Pironneau, O. & Valentin, F. 1998 Effective boundary conditions for laminar flows over periodic rough boundaries. J. Comput. Phys. 147, 187218.10.1006/jcph.1998.6088Google Scholar
Alben, S., Shelley, M. & Zhang, J. 2002 Drag reduction through self-similar bending of a flexible body. Nature 420, 479481.10.1038/nature01232Google Scholar
Alinovi, E. & Bottaro, A. 2018 Apparent slip and drag reduction for the flow over superhydrophobic and lubricant-impregnated surfaces. Phys. Rev. Fluids 3, 124002.10.1103/PhysRevFluids.3.124002Google Scholar
Amini, S., Kolle, S., Petrone, L., Ahanotu, O., Sunny, S., Sutanto, C. N., Hoon, S., Cohen, L., Weaver, J. C., Aizenberg, J. et al. 2017 Preventing mussel adhesion using lubricant-infused materials. Science 357, 668673.10.1126/science.aai8977Google Scholar
Angot, P., Goyeau, B. & Ochoa-Tapia, J. A. 2017 Asymptotic modeling of transport phenomena at the interface between a fluid and a porous layer: jump conditions. Phys. Rev. E 95, 063302.Google Scholar
Arenas, I., García, E., Fu, M. K., Orlandi, P., Hultmark, M. & Leonardi, S. 2019 Comparison between super-hydrophobic, liquid infused and rough surfaces: a DNS study. J. Fluid Mech. 869, 500525.10.1017/jfm.2019.222Google Scholar
Auriault, J.-L. & Sanchez-Palencia, E. 1977 Etude du comportement macroscopique d’un milieu poreux saturé déformable. J. Méc. 16 (4), 575603.Google Scholar
Babuška, I. 1976 Homogenization and its application. Mathematical and computational problems. In Numerical Solution of Partial Differential Equations – III SYNSPADE 1975 (ed. Hubbard, B.), pp. 89116. Academic Press.10.1016/B978-0-12-358503-5.50009-9Google Scholar
Bachmann, T. W.2010 Anatomical, morphometrical and biomechanical studies of barn owls’ and pigeons’ wings. PhD thesis, Aachen University, http://publications.rwth-aachen.de/record/51750/files/3251.pdf.Google Scholar
Bannier, A.2016 Contrôle de la traînée de frottement d’une couche limite turbulente au moyen de revêtements rainurés de type riblets. PhD thesis, Université Pierre et Marie Curie – Paris VI, https://hal.archives-ouvertes.fr/tel-01414968v2.Google Scholar
Beavers, G. S. & Joseph, D. D. 1967 Boundary condition at a natural permeable wall. J. Fluid Mech. 30, 197207.10.1017/S0022112067001375Google Scholar
Beavers, G. S., Sparrow, E. M. & Magnuson, R. A. 1970 Experiments on coupled parallel flows in a channel and a bounding porous medium. Trans. ASME J. Basic Engng 92 (4), 843848.10.1115/1.3425155Google Scholar
Beavers, G. S., Sparrow, E. M. & Masha, B. A. 1974 Boundary condition at a porous surface which bounds a fluid flow. AIChE J. 20 (3), 596597.10.1002/aic.690200323Google Scholar
Bechert, D. W. & Bartenwerfer, M. 1989 The viscous flow on surfaces with longitudinal ribs. J. Fluid Mech. 206, 105129.10.1017/S0022112089002247Google Scholar
Bechert, D. W., Bruse, M., Hage, W. & Meyer, R. 2000 Fluid mechanics of biological surfaces and their technological application. Naturwissenschaften 87, 157171.10.1007/s001140050696Google Scholar
Bechert, D. W., Bruse, M., Hage, W., Van Der Hoeven, J. G. T. & Hoppe, G. 1997 Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J. Fluid Mech. 338, 5987.10.1017/S0022112096004673Google Scholar
Bechert, D. W., Hage, W. & Meyer, R. 2007 Self-actuating flaps on bird and aircraft wings. In Flow Phenomena in Nature (ed. Liebe, R. J.), vol. 2. WIT Transactions on State-of-the-art in Science and Engineering.Google Scholar
Biot, M. A. 1941 General theory of three-dimensional consolidation. J. Appl. Phys. 12 (2), 155164.10.1063/1.1712886Google Scholar
Biot, M. A. 1956a Theory of propagation of elastic waves in a fluid-saturated poroeus solid. I Low-frequency range. J. Acoust. Soc. Am. 28 (2), 168178.10.1121/1.1908239Google Scholar
Biot, M. A. 1956b Theory of propagation of elastic waves in a fluid-saturated poroeus solid. II Higher-frequency range. J. Acoust. Soc. Am. 28 (2), 179191.10.1121/1.1908241Google Scholar
Bormashenko, E., Bormashenko, Y., Stein, T., Whyman, G. & Bormashenko, E. 2007 Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie–Baxter wetting hypothesis and Cassie–Wenzel capillarity-induced wetting transition. J. Colloid Interface Sci. 311, 212216.10.1016/j.jcis.2007.02.049Google Scholar
Bowen, R. M. 1982 Compressible porous media models by use of the theory of mixtures. Intl J. Engng Sci. 20 (6), 697735.Google Scholar
Bradshaw, P. 2000 A note on critical roughness height and transitional roughness. Phys. Fluids 12 (6), 16111614.10.1063/1.870410Google Scholar
Breugem, W. P., Boersma, B. J. & Uittenbogaard, R. E. 2006 The influence of wall permeability on turbulent channel flow. J. Fluid Mech. 562, 3572.10.1017/S0022112006000887Google Scholar
Brücker, C. 2011 Interaction of flexible surface hairs with near-wall turbulence. J. Phys.: Condens. Matter 23 (18), 184120.Google Scholar
Brücker, C., Spatz, J. & Schröder, W. 2005 Feasability study of wall shear stress imaging using microstructured surfaces with flexible micropillars. Exp. Fluids 39 (2), 464474.10.1007/s00348-005-1003-7Google Scholar
Burridge, R. & Keller, J. B. 1981 Poroelasticity equations derived from microstructure. J. Acoust. Soc. Am. 70 (4), 11401146.10.1121/1.386945Google Scholar
Carraro, T., Marǔsić-Paloka, E. & Mikelić, A. 2018 Effective pressure boundary condition for the filtration through porous medium via homogenization. Nonlinear Anal.-Real 44, 149172.10.1016/j.nonrwa.2018.04.008Google Scholar
Cassie, A. B. D. & Baxter, S. 1944 Wettability of porous surfaces. Trans. Faraday Soc. 40, 546551.10.1039/tf9444000546Google Scholar
Chandesris, M. & Jamet, D. 2007 Boundary conditions at a fluid-porous interface: an a priori estimation of the stress jump coefficients. Intl J. Heat Mass Transfer 50 (17–18), 34223436.10.1016/j.ijheatmasstransfer.2007.01.053Google Scholar
Cho, S., Kim, J. & Choi, H. 2018 Control of flow around a low Reynolds number airfoil using longitudinal strips. Phys. Rev. Fluids 3, 113901.10.1103/PhysRevFluids.3.113901Google Scholar
Chu, X., Weigand, B. & Vaikuntanathan, V. 2018 Flow turbulence topology in regular porous media: from macroscopic to microscopic scale with direct numerical simulation. Phys. Fluids 30 (6), 065102.10.1063/1.5030651Google Scholar
Clark, I. A., Daly, C. A., Devenport, W., Alexander, W. N., Peake, N., Jaworski, J. W. & Glegg, S. 2016 Bio-inspired canopies for the reduction of roughness noise. J. Sound Vib. 385, 3354.Google Scholar
Cowin, S. C. 1999 Bone poroelasticity. J. Biomech. 32, 217238.10.1016/S0021-9290(98)00161-4Google Scholar
Darrigol, O. 2005 Worlds of Flow: A History of Hydrodynamics from the Bernoullis to Prandtl. Oxford University Press.Google Scholar
Davit, Y., Bell, C. G., Byrne, H., Chapman, L. A. C., Kimpton, L. S., Lang, G. E., Leonard, K. H. L., Oliver, J. M., Pearson, N. C., Shipley, R. J. et al. 2013 Homogenization via formal multiscale asymptotics and volume averaging: how do the two techniques compare? Adv. Water Resour. 62 (part B), 178206.10.1016/j.advwatres.2013.09.006Google Scholar
Domel, A. G., Saadat, M., Weaver, J. C., Haj-Hariri, H., Bertoldi, K. & Lauder, G. V. 2018 Shark skin-inspired designs that improve aerodynamic performance. J. R. Soc. Interface 15 (139), 20170828.10.1098/rsif.2017.0828Google Scholar
Dussan, E. B. 1979 On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annu. Rev. Fluid Mech. 11, 371400.10.1146/annurev.fl.11.010179.002103Google Scholar
Edwards, D. A., Shapiro, M., Bar-Yoseph, P. & Shapira, M. 1990 The influence of Reynolds number upon the apparent permeability of spatially periodic arrays of cylinders. Phys. Fluids 2, 4555.10.1063/1.857691Google Scholar
Ene, H. I. & Sanchez-Palencia, E. 1975 Equations et phénomenes de surface pour l’écoulement dans un modèle de milieu poreux. J. Méc. 14 (1), 73108.Google Scholar
Evseev, A. R. 2017 Visual study of turbulent filtration in porous media. J. Porous Media 20 (6), 549557.10.1615/JPorMedia.v20.i6.50Google Scholar
Favier, J., Dauptain, A., Basso, D. & Bottaro, A. 2009 Passive separation control using a self-adaptive hairy coating. J. Fluid Mech. 627, 451483.10.1017/S0022112009006119Google Scholar
Firdaouss, M., Guermond, J.-L. & Le Quéré, P. 1997 Nonlinear corrections to Darcy’s law at low Reynolds numbers. J. Fluid Mech. 343, 331350.10.1017/S0022112097005843Google Scholar
Flack, K. A. & Schultz, M. P. 2014 Roughness effects on wall-bounded turbulent flows. Phys. Fluids 26, 101305.10.1063/1.4896280Google Scholar
Flack, K. A., Schultz, M. P. & Shapiro, T. A. 2005 Experimental support for Townsend’s Reynolds number similarity hypothesis on rough walls. Phys. Fluids 17, 035102.10.1063/1.1843135Google Scholar
Fransson, J. H. M., Talamelli, A., Brandt, L. & Cossu, C. 2006 Delaying transition to turbulence by a passive mechanism. Phys. Rev. Lett. 96, 064501.10.1103/PhysRevLett.96.064501Google Scholar
García-Mayoral, R. & Jiménez, J. 2011 Drag reduction by riblets. Phil. Trans. R. Soc. Lond. A 369, 14121427.10.1098/rsta.2010.0359Google Scholar
Ghisalberti, M. & Nepf, H. 2002 Mixing layers and coherent structures in vegetated aquatic flow. J. Geophys. Res. Oceans 107 (C2), 3–1–3–11.10.1029/2001JC000871Google Scholar
Gómez-de-Segura, G., Fairhall, C. T., MacDonald, M., Chung, D. & García-Mayoral, R. 2018 Manipulation of near-wall turbulence by surface slip and permeability. J. Phys.: Conf. Ser. 1001, 012011.Google Scholar
Gómez-de-Segura, G. & García-Mayoral, R. 2019 Turbulent drag reduction by anisotropic permeable substrates – analysis and direct numerical simulations. J. Fluid Mech. 875, 124172.10.1017/jfm.2019.482Google Scholar
Gosselin, F., de Langre, E. & Machado-Almeida, B. A. 2010 Drag reduction of flexible plates by reconfiguration. J. Fluid Mech. 650, 319341.10.1017/S0022112009993673Google Scholar
Grüneberger, R. & Hage, W. 2011 Drag characteristics of longitudinal and transverse riblets at low dimensionless spacings. Exp. Fluids 50, 363373.10.1007/s00348-010-0936-7Google Scholar
Grüneberger, R., Kramer, F., Wassen, E., Hage, W., Meyer, R. & Thiele, F. 2012 Influence of wave-like riblets on turbulent friction drag. In Nature-Inspired Fluid Mechanics, NNFM 119 (ed. Tropea, C. & Bleckmann, H.), pp. 311329. Springer, Berlin.10.1007/978-3-642-28302-4_19Google Scholar
Hasegawa, M. & Sakaue, H.2018 Flow control over a circular cylinder using micro-fiber coating at subcritical regime. AIAA 2018-0322.10.2514/6.2018-0322Google Scholar
Hersh, A. S., Soderman, P. T. & Hayden, R. E. 1974 Investigation of acoustic effects of leading-edge serrations on airfoils. J. Aircraft 11 (4), 197202.10.2514/3.59219Google Scholar
Ho, C.-M. & Tai, Y.-C. 1998 Micro-Electro-Mechanical-Systems (MEMS) and fluid flow. Annu. Rev. Fluid Mech. 30, 579612.10.1146/annurev.fluid.30.1.579Google Scholar
Hooshmand, D., Youngs, R., Wallace, J. M. & Balint, J.-L.1983 An experimental study of changes in the structure of a turbulent boundary layer due to surface geometry changes. AIAA Paper 83-0230.Google Scholar
Hornung, U.(Ed.) 1997 Homogenization and Porous Media, Springer.10.1007/978-1-4612-1920-0Google Scholar
Itoh, M., Tamano, S., Iguchi, R., Yokota, K., Akino, N., Hino, R. & Kubo, S. 2006 Turbulent drag reduction by the seal fur surface. Phys. Fluids 18 (6), 065102.10.1063/1.2204849Google Scholar
Jäger, W. & Mikelić, A. 2000 On the interface boundary condition of Beavers, Joseph and Saffman. SIAM J. Appl. Maths 60 (4), 11111127.Google Scholar
Jäger, W. & Mikelić, A. 2009 Modeling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization. Trans. Porous Med. 78 (3), 489508.Google Scholar
Jaworski, J. W. & Peake, N. 2013 Aerodynamic noise from a poroelastic edge with implications for the silent flight of owls. J. Fluid Mech. 723, 456479.10.1017/jfm.2013.139Google Scholar
Jiménez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173196.10.1146/annurev.fluid.36.050802.122103Google Scholar
Kirschner, C. M. & Brennan, A. B. 2012 Bio-inspired antifouling strategies. Annu. Rev. Mater. Res. 42, 211229.10.1146/annurev-matsci-070511-155012Google Scholar
Koch, K. & Barthlott, W. 2009 Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. Phil. Trans. R. Soc. Lond. A 367, 14871509.10.1098/rsta.2009.0022Google Scholar
Koch, K., Blecher, I. C., König, G., Kehraus, S. & Barthlott, W. 2009 The superhydrophilic and superoleophilic leaf surface of Ruellia devosiana (Acanthaceae): a biological model for spreading of water and oil on surfaces. Funct. Plant Biol. 36 (4), 339350.10.1071/FP08295Google Scholar
Kovalev, I. 2008 The functional role of the hollow region of the butterfly Pyrameis atalanta (L.) scale. J. Bionic Engng 5, 224230.10.1016/S1672-6529(08)60028-1Google Scholar
Kramer, F., Grüneberger, R., Thiele, F., Wassen, E., Hage, W. & Meyer, R.2010 Wavy riblets for turbulent drag reduction. AIAA 2010-4583.10.2514/6.2010-4583Google Scholar
Kuwata, Y. & Suga, K. 2016 Lattice Boltzmann direct numerical simulation of interface turbulence over porous and rough walls. Intl J. Heat Fluid Flow 61, 145157.10.1016/j.ijheatfluidflow.2016.03.006Google Scholar
Kuwata, Y. & Suga, K. 2017 Direct numerical simulation of turbulence over anisotropic porous media. J. Fluid Mech. 831, 4171.10.1017/jfm.2017.619Google Scholar
Lācis, U. & Bagheri, S. 2017 A framework for computing effective boundary conditions at the interface between free fluid and a porous medium. J. Fluid Mech. 812, 866889.10.1017/jfm.2016.838Google Scholar
Lācis, U., Sudhakar, Y., Pasche, S. & Bagheri, S. 2019 Transfer of mass and momentum at rough and porous surfaces. J. Fluid Mech. (submitted) arXiv:1812.09401v2.Google Scholar
de Langre, E. 2008 Effects of wind on plants. Annu. Rev. Fluid Mech. 40, 141168.10.1146/annurev.fluid.40.111406.102135Google Scholar
Larson, R. E. & Higdon, J. J. L. 1986 Microscopic flow near the surface of two-dimensional porous media. Part 1. Axial flow. J. Fluid Mech. 166, 449472.10.1017/S0022112086000228Google Scholar
Lasseux, D., Abbasian Arani, A. A. & Ahmadi, A. 2011 On the stationary macroscopic inertial effects for one phase flow in ordered and disordered porous media. Phys. Fluids 23, 073103.10.1063/1.3615514Google Scholar
Lasseux, D. & Valdés-Parada, F. J. 2017 Symmetry properties of macroscopic transport coefficients in porous media. Phys. Fluids 29, 043303.10.1063/1.4979907Google Scholar
Lasseux, D., Valdés-Parada, F. J. & Bellet, F. 2019 Macroscopic model for unsteady flow in porous media. J. Fluid Mech. 862, 283311.10.1017/jfm.2018.878Google Scholar
Le Bars, M. & Worster, M. G. 2006 Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification. J. Fluid Mech. 550, 149173.10.1017/S0022112005007998Google Scholar
Lions, J. L., Lukkassen, D., Persson, L. E. & Wall, P. 2001 Reiterated homogenization of nonlinear monotone operators. Chin. Ann. Math. 22B (1), 112.10.1142/S0252959901000024Google Scholar
Liu, K. & Jiang, L. 2012 Bio-inspired self-cleaning surfaces. Annu. Rev. Mater. Res. 42, 231263.10.1146/annurev-matsci-070511-155046Google Scholar
Liu, Y., Wexler, J. S., Schönecker, C. & Stone, H. A. 2016 Effect of viscosity ratio on the shear-driven failure of liquid-infused surfaces. Phys. Rev. Fluids 1, 074003.10.1103/PhysRevFluids.1.074003Google Scholar
Luchini, P. 1995 Asymptotic analysis of laminar boundary-layer flow over finely grooved surfaces. Eur. J. Mech. (B/Fluids) 14 (2), 169195.Google Scholar
Luchini, P. 1996 Reducing the turbulent skin friction. In Computational Methods in Applied Sciences (ed. Désideri, J.-A. et al. ), pp. 466470. John Wiley and Sons.Google Scholar
Luchini, P. 2015 The relevance of longitudinal and transverse protrusion heights for drag reduction by a superhydrophobic surface. In Proceedings of the European Drag Reduction and Flow Control Meeting – EDRFMC; March 23–26, 2015, Cambridge, UK (ed. Choi, K.-S. & García-Mayoral, R.), pp. 8182.Google Scholar
Luchini, P. 2018 Structure and interpolation of the turbulent velocity profile in parallel flow. Eur. J. Mech. (B/Fluids) 71, 1534.10.1016/j.euromechflu.2018.03.006Google Scholar
Luchini, P., Manzo, D. & Pozzi, A. 1991 Resistance of a grooved surface to parallel flow and cross-flow. J. Fluid Mech. 228, 87109.Google Scholar
Luminari, N., Airiau, C. & Bottaro, A. 2018 Effects of porosity and inertia on the apparent permeability tensor in fibrous media. Intl J. Multiphase Flow 106, 6074.10.1016/j.ijmultiphaseflow.2018.04.013Google Scholar
Maxwell, J. C. 1879 On stresses in rarified gases arising from inequalities of temperature. Phil. Trans. R. Soc. Lond. A 170, 231256.Google Scholar
McClure, P. D., Smith, B. & Baker, W.2010 Design and testing of 3-D riblets. AIAA 2018-0324.Google Scholar
Mei, C. C. & Auriault, J.-L. 1991 The effect of weak inertia in flow through a porous medium. J. Fluid Mech. 222, 647663.10.1017/S0022112091001258Google Scholar
Mei, C. C. & Vernescu, B. 2010 Homogenization Methods for Multiscale Mechanics. World Scientific.10.1142/7427Google Scholar
Navier, C. L. M. H. 1823 Mémoire sur les lois du mouvement des fluides. Mem. Acad. R. Sci. Inst. Fr. 6, 389440.Google Scholar
Nepf, H. 2012 Flow and transport in regions with aquatic vegetation. Annu. Rev. Fluid Mech. 44, 123142.10.1146/annurev-fluid-120710-101048Google Scholar
Netti, P. A., Baxter, L. T., Boucher, Y., Skalak, R. & Jain, R. K. 1997 Macro and microscopic fluid transport in living tissues: Application to solid tumors. AIChE J. 43 (3), 818834.10.1002/aic.690430327Google Scholar
Nield, D. A. 2009 The Beavers-Joseph boundary condition and related matters: a historical and critical note. Trans. Porous Med. 78 (3), 537540.Google Scholar
Nikuradse, J.1933 Strömungsgesetze in rauhen Rohren. VDI-Forschungsheft, N361. (English translation: Laws of flow in rough pipes) NACA Tech. Mem. 1292 (1950).Google Scholar
Ochoa-Tapia, J. A. & Whitaker, S. 1995a Momentum transfer at the boundary between a porous medium and a homogeneous fluid I. Theoretical development. Intl J. Heat Mass Transfer 38 (14), 26352646.10.1016/0017-9310(94)00346-WGoogle Scholar
Ochoa-Tapia, J. A. & Whitaker, S. 1995b Momentum transfer at the boundary between a porous medium and a homogeneous fluid II. Comparison with experiment. Intl J. Heat Mass Transfer 38 (14), 26472655.10.1016/0017-9310(94)00347-XGoogle Scholar
Oeffner, J. & Lauder, G. V. 2012 The hydrodynamic function of shark skin and two biomimetic applications. J. Expl Biol. 215, 785795.10.1242/jeb.063040Google Scholar
Orlandi, P. & Leonardi, S. 2006 DNS of turbulent channel flows with two- and three-dimensional roughness. J. Turbul. 7 (53), N73.10.1080/14685240600827526Google Scholar
Pauthenet, M., Davit, Y., Quintard, M. & Bottaro, A. 2018 Inertial sensitivity of porous microstructures. Trans. Porous Med. 125, 211238.Google Scholar
Perez Goodwyn, P., Maezono, Y., Hosoda, N. & Fujisaki, K. 2009 Waterproof and translucent wings at the same time: problems and solutions in butterflies. Naturwissenschaften 96 (7), 781787.10.1007/s00114-009-0531-zGoogle Scholar
Philip, J. R. 1972 Flows satisfying mixed no-slip and no-shear conditions. Z. Angew. Math. Phys. J. Appl. Math. Phys. 23, 353372.10.1007/BF01595477Google Scholar
Prum, R. O. 1999 Development and evolutionary origin of feathers. J. Expl Zool. 285 (4), 291306.10.1002/(SICI)1097-010X(19991215)285:4<291::AID-JEZ1>3.0.CO;2-93.0.CO;2-9>Google Scholar
Quéré, D. 2008 Wetting and roughness. Annu. Rev. Mater. Res. 38, 7199.10.1146/annurev.matsci.38.060407.132434Google Scholar
Raupach, M. R., Antonia, R. A. & Rajagopalan, S. 1991 Rough-wall turbulent boundary layers. Appl. Mech. Rev. 44 (1), 125.10.1115/1.3119492Google Scholar
Rawlings, D. C. & Burg, A. G.2016 Elastomeric riblets. United States Patent US 9,352,533 B2.Google Scholar
Rosen, M. W. N. & Cornford, N. E. 1971 Fluid friction of fish slimes. Nature 234, 4951.10.1038/234049a0Google Scholar
Rosti, M., Brandt, L. & Pinelli, A. 2018 Turbulent channel flow over an anisotropic porous wall drag increase and reduction. J. Fluid Mech. 842, 381394.10.1017/jfm.2018.152Google Scholar
Rothstein, J. P. 2010 Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42, 89109.10.1146/annurev-fluid-121108-145558Google Scholar
Saffman, P. G. 1971 On the boundary condition at the surface of a porous medium. Stud. Appl. Maths 1 (2), 93101.10.1002/sapm197150293Google Scholar
Sahraoui, M. & Kaviany, M. 1992 Slip and no-slip velocity boundary conditions at interface of porous, plain media. Intl J. Heat Mass Transfer 35, 927943.10.1016/0017-9310(92)90258-TGoogle Scholar
Saric, W. S. & Reed, H. L.2002 Supersonic laminar flow control on swept wings using distributed roughness. AIAA paper 2002-0147.Google Scholar
Seo, J., García-Mayoral, R. & Mani, A. 2015 Pressure fluctuations and interfacial robustness in turbulent flows over superhydrophobic surfaces. J. Fluid Mech. 783, 448473.10.1017/jfm.2015.573Google Scholar
Seo, J., García-Mayoral, R. & Mani, A. 2018 Turbulent flows over superhydrophobic surfaces: flow-induced capillary waves, and robustness of air-water interfaces. J. Fluid Mech. 835, 4585.10.1017/jfm.2017.733Google Scholar
Shephard, K. L. 1994 Functions for fish mucus. Rev. Fish Biol. Fisheries 4, 401429.10.1007/BF00042888Google Scholar
Sirovich, L. & Karlsson, S. 1997 Turbulent drag reduction by passive mechanisms. Nature 388, 753755.10.1038/41966Google Scholar
Smith, J. D., Dhiman, R., Anand, S., Reza-Garduno, E., Cohen, R. E., McKinley, G. H. & Varanasi, K. K. 2013 Droplet mobility on lubricant-impregnated surfaces. Soft Matt. 9, 17721780.Google Scholar
Solomon, B. R., Subramanyam, S. B., Farnham, T. A., Khalil, K. S., Anand, S. & Varanasi, K. K. 2017 Lubricant-impregnated surfaces. In Non-wettable Surfaces: Theory, Preparation and Applications (ed. Ras, R. H. A. & Marmur, A.), pp. 285318. The Royal Society of Chemistry.Google Scholar
Stokes, G. G. 1845 On the theories of the internal friction of fluids in motion and of the equilibrium and motion of elastic solids. Trans. Camb. Phil. Soc. 8, 287319.Google Scholar
Suga, K., Nakagawa, Y. & Kaneda, M. 2017 Spanwise turbulence structure over permeable walls. J. Fluid Mech. 822, 186201.10.1017/jfm.2017.278Google Scholar
Suga, K., Okazaki, Y., Ho, U. & Kuwata, Y. 2018 Anisotropic wall permeability effects on turbulent channel flows. J. Fluid Mech. 855, 9831016.10.1017/jfm.2018.666Google Scholar
Sundin, J. & Bagheri, S. 2019 Interaction between hairy surfaces and turbulence for different surface time scales. J. Fluid Mech. 861, 556584.10.1017/jfm.2018.935Google Scholar
Taylor, G. I. 1923 Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc. Lond. A 223, 289343.10.1098/rsta.1923.0008Google Scholar
Terzaghi, K. 1925 Erdbaumechanik auf Bodenphysikalischer Grundlage. Deuticke.Google Scholar
Thakkar, M., Busse, A. & Sandham, N. D. 2018 Direct numerical simulation of turbulent channel flow over a surrogate for Nikuradse-type roughness. J. Fluid Mech. 837, R1.10.1017/jfm.2017.873Google Scholar
Toms, B. A. 1948 Some observation on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. In Proceedings of the 1st International Congress on Rheology, Amsterdam, The Netherlands, vol. II, pp. 135141.Google Scholar
Torquato, S. 2002 Random Heterogeneous Materials. Microstructure and Macroscopic Properties. Springer.10.1007/978-1-4757-6355-3Google Scholar
Townsend, A. A. 1961 Equilibrium layers and wall turbulence. J. Fluid Mech. 11, 97120.10.1017/S0022112061000883Google Scholar
Valdés-Parada, F. J., Aguilar-Madera, C. G., Ochoa-Tapia, J. A. & Goyeau, B. 2013 Velocity and stress jump conditions between a porous medium and a fluid. Adv. Water Resour. 62, 327339.10.1016/j.advwatres.2013.08.008Google Scholar
Valdés-Parada, F. J., Alvarez-Ramírez, J., Goyeau, B. & Ochoa-Tapia, J. A. 2009 Computation of jump coefficients for momentum transfer between a porous medium and a fluid using a closed generalized transfer equation. Trans. Porous Med. 78 (3), 439457.Google Scholar
Valdés-Parada, F. J., Lasseux, D. & Bellet, F. 2016 A new formulation of the dispersion tensor in homogeneous porous media. Adv. Water Resour. 90, 7082.10.1016/j.advwatres.2016.02.012Google Scholar
Van Buren, T. & Smits, A. J. 2017 Substantial drag reduction in turbulent flow using liquid-infused surfaces. J. Fluid Mech. 827, 448456.10.1017/jfm.2017.503Google Scholar
Wang, H. F. 2000 Theory of Linear Poroelasticity with Application to Geomechanics and Hydrogeology. Princeton University Press.Google Scholar
Wen, L., Weaver, J. C. & Lauder, G. V. 2014 Biomimetic shark skin: design, fabrication and hydrodynamic function. J. Expl Biol. 217, 16561666.10.1242/jeb.097097Google Scholar
Whitaker, S. 1996 The Forchheimer equation: A theoretical development. Trans. Porous Med. 25, 2761.Google Scholar
Whitaker, S. 1999 The Method of Volume Averaging. Springer.10.1007/978-94-017-3389-2Google Scholar
Wong, T.-S., Kang, S. H., Tang, S. K. Y., Smythe, E. J., Hatton, B. D., Grinthal, A. & Aizenberg, J. 2011 Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443447.10.1038/nature10447Google Scholar
Zampogna, G. A. & Bottaro, A. 2016 Fluid flow over and through a regular bundle of rigid fibres. J. Fluid Mech. 792, 131.10.1017/jfm.2016.66Google Scholar
Zampogna, G. A., Lacis, U., Bagheri, S. & Bottaro, A. 2019a Modeling waves in fluids flowing over and through poroelastic media. Intl J. Multiphase Flow 110, 148164.10.1016/j.ijmultiphaseflow.2018.09.006Google Scholar
Zampogna, G. A., Magnaudet, J. & Bottaro, A. 2019b Generalized slip condition over rough surfaces. J. Fluid Mech. 858, 407436.10.1017/jfm.2018.780Google Scholar
Zampogna, G. A., Naqvi, S. B., Magnaudet, J. & Bottaro, A. 2019c Compliant riblets: problem formulation and effective macrostructural properties. J. Fluids Struct. (in press).10.1016/j.jfluidstructs.2019.102708Google Scholar