Published online by Cambridge University Press: 04 June 2018
We study experimentally the flow of light granular material along the free surface of a liquid of greater density. Despite a rich set of related geophysical and environmental phenomena, such as the spreading of calved ice, volcanic ash, debris and industrial wastes, there are few previous studies on this topic. We conduct a series of lock-release experiments of buoyant spherical beads into a rectangular tank initially filled with either fresh or salt water, and record the time evolution of the interface shape and the front location of the current of beads. We find that following the release of the lock the front location obeys a power-law behaviour during an intermediate time period before the nose of beads reaches a maximum runout distance within a finite time. We investigate the dependence of the scaling exponent and runout distance on the total amount of beads, the initial lock length, and the properties of the liquid that fills the tank in the experiments. Scaling arguments are provided to collapse the experimental data into universal curves, which can be used to describe the front dynamics of buoyant granular flows with different size and buoyancy effects and initial lock aspect ratios.