Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T00:41:17.675Z Has data issue: false hasContentIssue false

Flow of a thin liquid-metal film in a toroidal magnetic field

Published online by Cambridge University Press:  28 March 2019

D. Lunz*
Affiliation:
Mathematical Institute, Andrew Wiles Building, Oxford OX2 6GG, UK
P. D. Howell
Affiliation:
Mathematical Institute, Andrew Wiles Building, Oxford OX2 6GG, UK
*
Email address for correspondence: [email protected]

Abstract

We investigate the gravity-driven flow of a thin film of liquid metal on a conducting conical substrate in the presence of a strong toroidal magnetic field (transverse to the flow and parallel to the substrate). We solve the leading-order governing equations in a physically relevant asymptotic limit to find the free-surface profile. We find that the leading-order fluid flow rate is a non-monotonic bounded function of the film height, and this can lead to singularities in the free-surface profile. We perform a detailed stability analysis and identify values of the relevant geometric, hydrodynamic and magnetic parameters such that the flow is stable.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alpher, R. A., Hurwitz, H., Johnson, R. H. & White, D. R. 1960 Some studies of free-surface mercury magnetohydrodynamics. Rev. Mod. Phys. 32 (4), 758769.Google Scholar
Craster, R. V. & Matar, O. K. 2009 Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81 (3), 11311198.Google Scholar
Davidson, P. A. 1999 Magnetohydrodynamics in materials processing. Annu. Rev. Fluid Mech. 31 (1), 273300.Google Scholar
Davidson, P. A. 2001 An Introduction to Magnetohydrodynamics. Cambridge University Press.Google Scholar
Davison, H. W.1968 Compilation of thermophysical properties of liquid lithium. Tech. Rep. TN D-4650. NASA (Cleveland, OH: Lewis Research Center).Google Scholar
Drazin, P. G. 1960 Stability of parallel flow in a parallel magnetic field at small magnetic Reynolds numbers. J. Fluid Mech. 8 (1), 130142.Google Scholar
Evtikhin, V. A., Lyublinski, I. E., Vertkov, A. V., Pistunovich, V. I., Golubchikov, L. G., Korzhavin, V. M., Pozharov, V. A. & Prokhorov, D. Y. 1997 The liquid lithium fusion reactor. In Sixteenth Conference Proceedings on Fusion Energy, vol. 3, pp. 659665. IAEA.Google Scholar
Falsaperla, P., Giacobbe, A., Lombardo, S. & Mulone, G. 2017 Stability of hydromagnetic laminar flows in an inclined heated layer. Ric. Mat. 66 (1), 125140.Google Scholar
Farrell, P., Birkisson, Á. & Funke, S. 2015 Deflation techniques for finding distinct solutions of nonlinear partial differential equations. SIAM J. Sci. Comput. 37 (4), A2026A2045.Google Scholar
Fiflis, P., Christenson, M., Szott, M., Kalathiparambil, K. & Ruzic, D. N. 2016 Free surface stability of liquid metal plasma facing components. Nucl. Fusion 56 (10), 106020.Google Scholar
Gao, D. & Morley, N. B. 2002 Equilibrium and initial linear stability analysis of liquid metal falling film flows in a varying spanwise magnetic field. Magnetohydrodynamics 38 (4), 359375.Google Scholar
Gao, D., Morley, N. B. & Dhir, V. 2002 Numerical study of liquid metal film flows in a varying spanwise magnetic field. Fusion Engng Des. 63–64, 369374.Google Scholar
Gao, D., Morley, N. B. & Dhir, V. 2003 Numerical simulation of wavy falling film flow using VOF method. J. Comput. Phys. 192 (2), 624642.Google Scholar
Giannakis, D., Fischer, P. F. & Rosner, R. 2009a A spectral Galerkin method for the coupled Orr–Sommerfeld and induction equations for free-surface MHD. J. Comput. Phys. 228 (4), 11881233.Google Scholar
Giannakis, D., Rosner, R. & Fischer, P. F. 2009b Instabilities in free-surface Hartmann flow at low magnetic Prandtl numbers. J. Fluid Mech. 636, 217277.Google Scholar
Golubchikov, L. G., Evtikhin, V. A., Lyublinski, I. E., Pistunovich, V. I., Potapov, I. N. & Chumanov, A. N. 1996 Development of a liquid–metal fusion reactor divertor with a capillary-pore system. J. Nucl. Mater. 233, 667672.Google Scholar
Gotoh, K. 1971 Hydromagnetic instability of a free shear layer at small magnetic Reynolds numbers. J. Fluid Mech. 49 (1), 2131.Google Scholar
Kantrowitz, A. R., Brogan, T. R., Rosa, R. J. & Louis, J. F. 1962 The magnetohydrodynamic power generator–basic principles, state of the art, and areas of application. IRE Trans. Mil. Electron. MIL‐6 (1), 7883.Google Scholar
Kurganov, A. & Tadmor, E. 2000 New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations. J. Comput. Phys. 160 (1), 241282.Google Scholar
Langlois, W. E. & Lee, K. J. 1983 Czochralski crystal growth in an axial magnetic field: effects of Joule heating. J. Cryst. Growth 62 (3), 481486.Google Scholar
Lunz, D. & Howell, P. D. 2018 Dynamics of a thin film driven by a moving pressure source. Phys. Rev. Fluids 3, 114801.Google Scholar
Michael, D. H. 1953 Stability of plane parallel flows of electrically conducting fluids. Math. Proc. Camb. Phil. Soc. 49 (1), 166168.Google Scholar
Miloshevsky, G. V. & Hassanein, A. 2010 Modelling of Kelvin–Helmholtz instability and splashing of melt layers from plasma-facing components in tokamaks under plasma impact. Nucl. Fusion 50 (11), 115005.Google Scholar
Morley, N. B. & Abdou, M. A. 1995 Modeling of fully-developed, liquid metal, thin film flows for fusion divertor applications. Fusion Engng Des. 30 (4), 339356.Google Scholar
Morley, N. B. & Abdou, M. A. 1997 Study of fully developed, liquid-metal, open-channel flow in a nearly coplanar magnetic field. Fusion Technol. 31 (2), 135153.Google Scholar
Morley, N. B. & Roberts, P. H. 1996 Solutions of uniform, open-channel, liquid metal flow in a strong, oblique magnetic field. Phys. Fluids 8 (4), 923935.Google Scholar
Morley, N. B., Smolentsev, S. & Gao, D. 2002 Modeling infinite/axisymmetric liquid metal magnetohydrodynamic free surface flows. Fusion Engng Des. 63–64, 343351.Google Scholar
Morley, N. B., Smolentsev, S., Munipalli, R., Ni, M.-J., Gao, D. & Abdou, M. A. 2004 Progress on the modeling of liquid metal, free surface, MHD flows for fusion liquid walls. Fusion Engng Des. 72 (13), 334.Google Scholar
Müller, U. & Bühler, L. 2001 Magnetofluiddynamics in Channels and Containers. Springer.Google Scholar
Myers, T. G. 1998 Thin films with high surface tension. SIAM Rev. 40 (3), 441462.Google Scholar
Nornberg, M. D., Ji, H., Peterson, J. L. & Rhoads, J. R. 2008 A liquid metal flume for free surface magnetohydrodynamic experiments. Rev. Sci. Instrum. 79 (9), 94501.Google Scholar
Ono, M., Majeski, R., Jaworski, M. A., Hirooka, Y., Kaita, R., Gray, T. K., Maingi, R., Skinner, C. H., Christenson, M. & Ruzic, D. N. 2017 Liquid lithium loop system to solve challenging technology issues for fusion power plant. Nucl. Fusion 57 (11), 116056.Google Scholar
Oron, A., Davis, S. H. & Bankoff, S. G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69 (3), 931980.Google Scholar
Platacis, E., Flerov, A., Klukin, A., Ivanov, S., Sobolevs, A., Shishko, A., Zaharov, L. & Gryaznevich, M. 2014 Gravitational flow of a thin film of liquid metal in a strong magnetic field. Fusion Engng Des. 89 (12), 29372945.Google Scholar
Roe, P. L. 1986 Characteristic-based schemes for the Euler equations. Annu. Rev. Fluid Mech. 18 (1), 337365.Google Scholar
Shimokawa, K., Itami, T. & Shimoji, M. 1986 On the temperature dependence of the magnetic susceptibility of liquid alkali metals. J. Phys. F: Met. Phys. 16 (11), 18111820.Google Scholar
Sozou, C. 1970 On the stability of plane flow of a conducting fluid in the presence of a coplanar magnetic field. J. Fluid Mech. 43 (3), 591596.Google Scholar
Stuart, J. T. 1954 On the stability of viscous flow between parallel planes in the presence of a co-planar magnetic field. Proc. R. Soc. Lond. A 221 (1145), 189206.Google Scholar
Vorobev, A. & Zikanov, O. 2007 Instability and transition to turbulence in a free shear layer affected by a parallel magnetic field. J. Fluid Mech. 574, 131154.Google Scholar
Weber, H. J. & Arfken, G. B. 2004 Essential Mathematical Methods for Physicists. Elsevier Science.Google Scholar
Weier, T., Shatrov, V. & Gerbeth, G. 2007 Flow control and propulsion in poor conductors. In Magnetohydrodynamics: Historical Evolution and Trends, pp. 295312. Springer.Google Scholar
Wolfram Research, Inc.2018 Mathematica, Version 11.3. Wolfram Research, Inc.Google Scholar
Wooler, P. T. 1961 Instability of flow between parallel planes with a coplanar magnetic field. Phys. Fluids 4 (1), 2427.Google Scholar
Xu, L. & Lan, W. 2017 On the nonlinear stability of plane parallel shear flow in a coplanar magnetic field. J. Maths Fluid Mech. 19 (4), 613622.Google Scholar
Yih, C.-S. 1963 Stability of liquid flow down an inclined plane. Phys. Fluids 6 (3), 321334.Google Scholar