Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-19T06:19:39.711Z Has data issue: false hasContentIssue false

Flat plate drag reduction using plasma-generated streamwise vortices

Published online by Cambridge University Press:  11 May 2021

X.Q. Cheng
Affiliation:
Center for Turbulence Control, Harbin Institute of Technology, Shenzhen518055, China
C.W. Wong*
Affiliation:
Center for Turbulence Control, Harbin Institute of Technology, Shenzhen518055, China
F. Hussain
Affiliation:
Department of Mechanical Engineering, Texas Tech University, Lubbock, TX79409, USA
W. Schröder
Affiliation:
Institute of Aerodynamics, RWTH Aachen University, 52062 Aachen, Germany
Y. Zhou*
Affiliation:
Center for Turbulence Control, Harbin Institute of Technology, Shenzhen518055, China
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

We present an experimental study of a turbulent boundary layer (TBL) control on a flat plate using plasma actuators. Three different configurations of the actuators produce spanwise arrays of large-scale streamwise vortices (LSSVs). An ultra-high-resolution floating element (FE) force balance, developed in house and calibrated using μ-particle tracking velocimetry, is employed to measure wall friction. The FE captures a drag reduction (DR) of up to 26 % on the FE area (667 × 1333 wall units), downstream of the actuators. The local DR persists downstream, well after the LSSVs disappear. Both plasma-generated flow and the TBL under control are compared with an uncontrolled TBL. The maximum DR takes place when the LSSVs producing wall jets reach a spanwise velocity of 3.9 in wall units. The flow is altered by up to 29 % of the TBL thickness, with a drop in the new vortices due to the control-induced stabilization of the wall streaks. The local friction is characterized by three distinct spatial regions of drag increase, pronounced DR and drag recovery – all connected to the LSSVs. The LSSVs push the streaks to the middle between two adjacent actuators, suppressing transient growth and near-wall turbulent production. A DR mechanism is proposed.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agostini, L., Touber, E. & Leschziner, M. A. 2014 Spanwise oscillatory wall motion in channel flow: drag-reduction mechanisms inferred from DNS-predicted phase-wise property variations at. J. Fluid Mech. 743, 606635.CrossRefGoogle Scholar
Allen, J. 1977 Experimental study of error sources in skin-friction balance measurements. J Fluid Engng. 99, 197204.CrossRefGoogle Scholar
Antonia, R., Kim, J. & Browne, L. 1991 Some characteristics of small-scale turbulence in a turbulent duct flow. J. Fluid Mech. 233, 369388.CrossRefGoogle Scholar
Antonia, R. A., Zhu, Y. & Sokolov, M. 1995 Effect of concentrated wall suction on a turbulent boundary layer. Phys. Fluids 7, 24652474.CrossRefGoogle Scholar
Baars, W. J., Squire, D. T., Talluru, K. M., Abbassi, M. R., Hutchins, N. & Marusic, I. 2016 Wall-drag measurements of smooth- and rough-wall turbulent boundary layers using a floating element. Exp. Fluids 57, 116.CrossRefGoogle Scholar
Bai, H. L., Zhou, Y., Zhang, W. G., Xu, S. J., Wang, Y. & Antonia, R. A. 2014 Active control of a turbulent boundary layer based on local surface perturbation. J. Fluid Mech. 750, 316354.CrossRefGoogle Scholar
Baron, A. & Quadrio, M. 1996 Turbulent drag reduction by spanwise wall oscillations. Appl. Sci. Res. 55, 311326.CrossRefGoogle Scholar
Benedict, L. H. & Gould, R. D. 1996 Towards better uncertainty estimates for turbulence statistics. Exp. Fluids 22, 129136.CrossRefGoogle Scholar
Bernard, P. S., Thomas, J. M. & Handler, R. A. 1993 Vortex dynamics and the production of Reynolds stress. J. Fluid Mech. 253, 385419.CrossRefGoogle Scholar
Blackwelder, R. & Kaplan, R. 1976 On the wall structure of the turbulent boundary layer. J. Fluid Mech. 76, 89112.CrossRefGoogle Scholar
Canton, J., Örlü, R., Chin, C., Hutchins, N., Monty, J. & Schlatter, P. 2016 a On large-scale friction control in turbulent wall flow in low Reynolds number channels. Flow Turbul. Combust. 97, 811827.CrossRefGoogle Scholar
Canton, J., Örlü, R., Chin, C. & Schlatter, P. 2016 b Reynolds number dependence of large-scale friction control in turbulent channel flow. Phy. Rev. Fluids 1, 081501.CrossRefGoogle Scholar
Carlson, H. A. & Lumley, J. L. 1996 Active control in the turbulent wall layer of a minimal flow unit. J. Fluid Mech. 329, 341371.CrossRefGoogle Scholar
Choi, K.-S. 2002 Near-wall structure of turbulent boundary layer with spanwise-wall oscillation. Phys. Fluids 14, 2530.CrossRefGoogle Scholar
Choi, K.-S., Debisschop, J.-R. & Clayton, B. R. 1998 Turbulent boundary-layer control by means of spanwise-wall oscillation. AIAA J. 36, 11571163.CrossRefGoogle Scholar
Choi, K. S., Jukes, T. & Whalley, R. 2011 Turbulent boundary-layer control with plasma actuators. Phil. Trans. R. Soc. A 369, 14431458.CrossRefGoogle ScholarPubMed
Choi, H., Moin, P. & Kim, J. 1993 Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech. 255, 503539.CrossRefGoogle Scholar
Choi, K. S., Yang, X., Clayton, B. R., Glover, E. J., Atlar, M., Semenov, B. N. & Kulik, V. M. 1997 Turbulent drag reduction using compliant surfaces. Proc. R. Soc. A 453, 22292240.CrossRefGoogle Scholar
Corke, T. C., Enloe, C. L. & Wilkinson, S. P. 2010 Dielectric barrier discharge plasma actuators for flow control. Annu. Rev. Fluid Mech. 42, 505529.CrossRefGoogle Scholar
Corke, T. C. & Thomas, F. O. 2018 Active and passive turbulent boundary drag reduction. AIAA J. 56, 38353847.CrossRefGoogle Scholar
Daniello, R. J., Waterhouse, N. E. & Rothstein, J. P. 2009 Drag reduction in turbulent flows over superhydrophobic surfaces. Phys. Fluids 21, 085103.CrossRefGoogle Scholar
De Graaff, D. B. & Eaton, J. K. 2000 Reynolds number scaling of the flat-plate turbulent boundary layer. J. Fluid Mech. 422, 319346.CrossRefGoogle Scholar
Du, Y., Symeonidis, V. & Karniadakis, G. E. 2002 Drag reduction in wall-bounded turbulence via a transverse travelling wave. J. Fluid Mech. 457, 134.CrossRefGoogle Scholar
Endo, T., Kasagi, N. & Suzuki, Y. 2000 Feedback control of wall turbulence with wall deformation. Intl J. Heat Fluid Flow 21, 568575.CrossRefGoogle Scholar
Ersoy, S. & Walker, J. D. A. 1985 Viscous flow induced by counter-rotating vortices. Phys. Fluids 28, 26872698.CrossRefGoogle Scholar
Fukagata, K., Kern, S., Chatelain, P., Koumoutsakos, P. & Kasagi, N. 2008 Evolutionary optimization of an anisotropic compliant surface for turbulent friction drag reduction. J. Turbul. 9, 117.CrossRefGoogle Scholar
Hakkinen, R. 2004 Reflections on fifty years of skin friction measurement. In 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, pp. 1–13. AIAA.CrossRefGoogle Scholar
Hamilton, J. M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.CrossRefGoogle Scholar
Hutchins, N. & Choi, K.-S. 2002 Accurate measurements of local skin-friction coefficient using hot-wire enemometry. Prog. Aerosp. Sci. 38, 421446.CrossRefGoogle Scholar
Hurst, E., Yang, Q. & Chung, Y. M. 2014 The effect of Reynolds number on turbulent drag reduction by streamwise travelling waves. J. Fluid Mech. 759, 2855.CrossRefGoogle Scholar
Hussain, F. 1986 Coherent structures and turbulence. J. Fluid Mech. 173, 303356.CrossRefGoogle Scholar
Hussain, F. & Duraisamy, K. 2011 Mechanics of viscous vortex reconnection. Phys. Fluids 23, 021701.CrossRefGoogle Scholar
Iuso, G., Onorato, M., Spazzini, P. G. & Di Cicca, G. M. 2002 Wall turbulence manipulation by large-scale streamwise vortices. J. Fluid Mech. 473, 2358.CrossRefGoogle Scholar
Jeong, J., Hussain, F., Schoppa, W. & Kim, J. 1997 Coherent structures near the wall in a turbulent channel flow. J. Fluid Mech. 332, 185214.CrossRefGoogle Scholar
Jimenez, J. & Pinelli, A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335359.CrossRefGoogle Scholar
Jukes, T. N. & Choi, K.-S. 2012 Dielectric-barrier-discharge vortex generators: characterisation and optimisation for flow separation control. Exp. Fluids 52, 329345.CrossRefGoogle Scholar
Jukes, T. N. & Choi, K.-S. 2013 On the formation of streamwise vortices by plasma vortex generators. J. Fluid Mech. 733, 370393.CrossRefGoogle Scholar
Jukes, T. N., Choi, K.-S., Johnson, G. A. & Scott, S. J. 2006 Characterization of surface plasma-induced wall flows through velocity and temperature measurements. AIAA J. 44, 764771.CrossRefGoogle Scholar
Kang, S. & Choi, H. 2000 Active wall motions for skin-friction drag reduction. Phys. Fluids 12, 33013304.CrossRefGoogle Scholar
Karniadakis, G. E. & Choi, K.-S. 2003 Mechanisms on transverse motions in turbulent wall flows. Annu. Rev. Fluid Mech. 35, 4562.CrossRefGoogle Scholar
Kim, J. 1983 On the structure of wall-bounded turbulent flows. Phys. Fluids 26, 20882097.CrossRefGoogle Scholar
Kim, J. 2011 Physics and control of wall turbulence for drag reduction. Phil. Trans. R. Soc. A 369, 1396-411.CrossRefGoogle ScholarPubMed
Kim, J., Kim, K. & Sung, H. J. 2003 Wall pressure fluctuations in a turbulent boundary layer after blowing or suction. AIAA J. 41, 16971704.CrossRefGoogle Scholar
Kline, S. J., Reynolds, W., Schraub, F. & Runstadler, P. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30, 741773.CrossRefGoogle Scholar
Kravchenko, A. G., Choi, H. & Moin, P. 1993 On the relation of near-wall streamwise vortices to wall skin friction in turbulent boundary layers. Phys. Fluids 5, 33073309.CrossRefGoogle Scholar
Krogstad, P-Å & Efros, V. 2010 Rough wall skin friction measurements using a high resolution surface balance. Intl J. Heat Fluid Flow 31, 429433.CrossRefGoogle Scholar
Li, W., Jessen, W., Roggenkamp, D., Klaas, M., Silex, W., Schiek, M. & Schröder, W. 2015 Turbulent drag reduction by spanwise traveling ribbed surface waves. Eur. J. Mech. B/Fluids) 53, 101112.CrossRefGoogle Scholar
Li, W., Roggenkamp, D., Jessen, W., Klaas, M. & Schröder, W. 2017 Reynolds number effects on the fluctuating velocity distribution in wall-bounded shear layers. Meas. Sci. Technol. 28, 015302.CrossRefGoogle Scholar
Lögdberg, O., Fransson, J. H. M. & Alfredsson, P. H. 2009 Streamwise evolution of longitudinal vortices in a turbulent boundary layer. J. Fluid Mech. 623, 2758.CrossRefGoogle Scholar
Mahfoze, O. & Laizet, S. 2017 Skin-friction drag reduction in a channel flow with streamwise-aligned plasma actuators. Intl J. Heat Fluid Flow 66, 8394.CrossRefGoogle Scholar
Mizumoto, H., Hosokawa, S., Suzuki, T. & Tomiyama, A. 2012 Evaluation of turbulence kinetic energy budget in turbulent flows by using a photobleaching molecular tagging velocimetry. AIP Conf. Proc. 1428, 295302.CrossRefGoogle Scholar
Moreau, E. 2007 Airflow control by non-thermal plasma actuators. J. Phys. D Appl. Phys. 40, 605636.CrossRefGoogle Scholar
Nagib, H. M., Chauhan, K. A. & Monkewitz, P. A. 2007 Approach to an asymptotic state for zero pressure gradient turbulent boundary layers. Phil. Trans. R. Soc. A 365, 755770.CrossRefGoogle Scholar
Orlandi, P. & Jiménez, J. 1994 On the generation of turbulent wall friction. Phys. Fluids 6, 634641.CrossRefGoogle Scholar
Park, J. & Choi, H. 1999 Effects of uniform blowing or suction from a spanwise slot on a turbulent boundary layer flow. Phys. Fluids 11, 30953105.CrossRefGoogle Scholar
Pauley, W. R. & Eaton, J. K. 1988 Experimental study of the development of longitudinal vortex pairs embedded in a turbulent boundary layer. AIAA J. 26, 816823.CrossRefGoogle Scholar
Pope, S. B. 2001 Turbulent Flows. Cambridge University Press.Google Scholar
Qiao, Z. X., Wu, Z. & Zhou, Y. 2018 Turbulent boundary layer manipulation under a proportional-derivative closed-loop scheme. Phys. Fluids 30, 115101.CrossRefGoogle Scholar
Qiao, Z. X., Xu, S. J. & Zhou, Y. 2019 On the measurement of wall-normal velocity derivative in a turbulent boundary layer. Flow Turbul. Combust 103, 369387.CrossRefGoogle Scholar
Qiao, Z. X., Zhou, Y. & Wu, Z. 2017 Turbulent boundary layer under the control of different schemes. Proc. R. Soc. A 473, 20170038.CrossRefGoogle ScholarPubMed
Quadrio, M., Ricco, P. & Viotti, C. 2009 Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction. J. Fluid Mech. 627, 161178.CrossRefGoogle Scholar
Rastegari, A. & Akhavan, R. 2015 On the mechanism of turbulent drag reduction with super-hydrophobic surfaces. J. Fluid Mech. 773, R4.CrossRefGoogle Scholar
Rathnasingham, R. & Breuer, K. S. 2003 Active control of turbulent boundary layers. J. Fluid Mech. 495, 209233.CrossRefGoogle Scholar
Ricco, P. & Wu, S. 2004 On the effects of lateral wall oscillations on a turbulent boundary layer. Exp. Therm. Fluid Sci. 29, 4152.CrossRefGoogle Scholar
Schlatter, P., Örlü, R., Li, Q., Brethouwer, G., Fransson, J. H. M., Johansson, A. V., Alfredsson, P. H. & Henningson, D. S. 2009 Turbulent boundary layers up to Reθ = 2500 studied through simulation and experiment. Phys. Fluids 21, 051702.CrossRefGoogle Scholar
Schoppa, W. & Hussain, F. 1998 A large-scale control strategy for drag reduction in turbulent boundary layers. Phys. Fluids 10, 10491051.CrossRefGoogle Scholar
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.CrossRefGoogle Scholar
Sciacchitano, A. & Wieneke, B. 2016 PIV uncertainty propagation. Meas. Sci. Technol. 27, 084006.CrossRefGoogle Scholar
Spalart, P. R. 1988 Direct simulation of a turbulent boundary layer up to Re θ = 1410. J. Fluid Mech. 187, 6198.CrossRefGoogle Scholar
Tardu, S. F. 2001 Active control of near-wall turbulence by local oscillating blowing. J. Fluid Mech. 439, 217253.CrossRefGoogle Scholar
Thomas, F. O., Corke, T. C., Duong, A., Midya, S. & Yates, K. 2019 Turbulent drag reduction using pulsed-DC plasma actuation. J. Phys. D: Appl. Phys. 52, 434001.CrossRefGoogle Scholar
Thomas, F. O., Corke, T. C., Iqbal, M., Kozlov, A. & Schatzman, D. 2009 Optimization of dielectric barrier discharge plasma actuators for active aerodynamic flow control. AIAA J. 47, 21692178.CrossRefGoogle Scholar
Wallace, J. M. 2016 Quadrant analysis in turbulence research: history and evolution. Annu. Rev. Fluid Mech. 48, 131158.CrossRefGoogle Scholar
Walsh, M. J. 1983 Riblets as a viscous drag reduction technique. AIAA J. 21, 485486.CrossRefGoogle Scholar
Wang, L., Wong, C. W., Lu, Z., Wu, Z. & Zhou, Y. 2017 Novel sawtooth dielectric barrier discharge plasma actuator for flow separation control. AIAA J. 55, 14051416.CrossRefGoogle Scholar
Whalley, R. D. & Choi, K.-S. 2014 Turbulent boundary-layer control with plasma spanwise travelling waves. Exp. Fluids 55, 1796.CrossRefGoogle Scholar
Wicks, M., Thomas, F. O., Corke, T. C., Patel, M. & Cain, A. B. 2015 Mechanism of vorticity generation in plasma streamwise vortex generators. AIAA J. 53, 34043413.CrossRefGoogle Scholar
Wong, C. W., Wang, L., Ma, W. & Zhou, Y. 2020 New sawtooth plasma actuator configuration and mechanism behind improved control performance. AIAA J. 58, 18811886.CrossRefGoogle Scholar
Yao, J., Chen, X. & Hussain, F. 2018 Drag control in wall-bounded turbulent flows via spanwise opposed wall-jet forcing. J. Fluid Mech. 852, 678709.CrossRefGoogle Scholar
Yao, J., Chen, X., Thomas, F. & Hussain, F. 2017 Large-scale control strategy for drag reduction in turbulent channel flows. Phy. Rev. Fluids 2, 062601.CrossRefGoogle Scholar
Yao, J. & Hussain, F. 2020 A physical model of turbulence cascade via vortex reconnection sequence and avalanche. J. Fluid Mech. 883, A51.CrossRefGoogle Scholar