Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-18T19:10:04.040Z Has data issue: false hasContentIssue false

Experimental and numerical investigation of a forced circular shear layer

Published online by Cambridge University Press:  21 April 2006

J. M. Chomaz
Affiliation:
Groupe de Physique des Solides de l'Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
M. Rabaud
Affiliation:
Groupe de Physique des Solides de l'Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
C. Basdevant
Affiliation:
Laboratoire de Météorologie Dynamique, Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
Y. Couder
Affiliation:
Groupe de Physique des Solides de l'Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France

Abstract

In a previous article we introduced a dissipative circular geometry in which stationary states of the shear flow instability were obtained. We show here that the dynamical behaviour of this flow depends strongly on the aspect ratio of the cell. In large cells, where the number of vortices is large, transitions from a mode with m vortices to a mode with (m−1) vortices occur through localized processes. In contrast to that situation, in small cells, transition takes place after a series of bifurcations which correspond to the successive breaking of all the symmetries of the flow.

We show that, provided an adequate forcing term is introduced, a two-dimensional numerical simulation of this flow is sufficient to recover all the dynamical processes which characterize the experimental flow.

Type
Research Article
Copyright
© 1988 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aref, A. 1983 Integrable, chaotic and turbulent vortex motion in two-dimensional flows. Ann. Rev. Fluid Mech. 15, 345.Google Scholar
Basdevant, C., Legras, B., Sadourny, R. & Béland, M. 1981 A study of barotropic model flows: intermittency, waves and predictability. J. Atmos. Sci. 38, 2305.Google Scholar
Basdevant, C. & Sadourny, R. 1983 Modélisation des échelles virtuelles dans la simulation numérique des écoulements turbulents tridimentionnels. J. Méc. Special number, p. 243.Google Scholar
Feigenbaum, M. J. 1978 Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19, 25.Google Scholar
Gorman, M., Swinney, H. L. & Rand, D. A. 1981 Doubly periodic circular Couette flow: experiments compared with predictions from dynamics and symmetry. Phys. Rev. Lett. 46, 992.Google Scholar
Greenspan, H. P. 1969 The Theory of Rotating Fluids, p. 100. Cambridge University Press.
Hide, R. & Mason, P. J. 1975 Sloping convection in a rotating fluid. Adv. Phys. 24, 47.Google Scholar
Hignett, P. 1985 Characteristics of amplitude vacillation in a differentially heated rotating fluid annulus. Geophys. Astrophys. Fluid Dyn. 31, 247.Google Scholar
Huerre, P. & Monkevitz, P. A. 1985 Absolute and convective instabilities in free shear layers. J. Fluid Mech. 159, 151.Google Scholar
Ho, C. M. & Huang, L. S. 1982 Subharmonics and vortex merging in mixing layers. J. Fluid Mech. 119, 443.Google Scholar
Ho, C. M. & Huerre, P. 1984 Perturbed shear layers. Ann. Rev. Fluid Mech. 16, 365.Google Scholar
Lamb, H. 1932 Hydrodynamics, 6th edn, chapter 7. Dover.
Matisse, P. & Gorman, M. 1984 Neutrally buoyant anisotropic particles for flow visualization. Phys. Fluids 27, 759.Google Scholar
Maurer, J. & Libchaber, A. 1980 Effect of the Prandtl number on the onset of turbulence in liquid 4He. J. Phys. Lett. Paris 41, L. 515.Google Scholar
Pierrehumbert, R. T. & Widnall, S. E. 1982 The two- and three-dimensional instabilities of a spatially periodic shear layer. J. Fluid Mech. 114, 59.Google Scholar
Rabaud, M. & Couder, Y. 1983 A shear-flow instability in a circular geometry. J. Fluid Mech. 136, 291.Google Scholar
Rand, D. 1982 Dynamics and symmetry. Predictions for modulated waves in rotating fluids. Arch. Rat. Mech. Anal. 59, 1.Google Scholar
Savaş, Ö. 1985 On flow visualization using reflective flakes. J. Fluid Mech. 152, 235.Google Scholar
Stewartson, K. 1957 On almost rigid rotations. J. Fluid Mech. 3, 17.Google Scholar
Stuart, J. T. 1967 On finite amplitude oscillations in laminar mixing layers. J. Fluid Mech. 29, 417.Google Scholar
Thorpe, S. A. 1971 Experiments on the instability of stratified shear flows: miscible fluids. J. Fluid Mech. 46, 299.Google Scholar
Tresser, C. & Coullet, P. 1978 Itérations d'endomorphismes et groupes de renormalisations. C. R. Acad. Sci. Paris 287 A, 577.Google Scholar
Winant, C. D. & Browand, F. K. 1974 Vortex pairing: the mechanism of turbulence mixing layer growth at moderate Reynolds number. J. Fluid Mech. 63, 237.Google Scholar