Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T19:44:19.463Z Has data issue: false hasContentIssue false

Electro-poroelastohydrodynamics of the endothelial glycocalyx layer

Published online by Cambridge University Press:  12 January 2018

P. P. Sumets
Affiliation:
Department of Engineering Science, University of Auckland, Auckland, New Zealand
J. E. Cater
Affiliation:
Department of Engineering Science, University of Auckland, Auckland, New Zealand
D. S. Long
Affiliation:
Biomedical Engineering Department, Wichita State University, Wichita, KS 67260, USA
R. J. Clarke*
Affiliation:
Department of Engineering Science, University of Auckland, Auckland, New Zealand
*
Email address for correspondence: [email protected]

Abstract

We consider pressure-driven flow of an ion-carrying viscous Newtonian fluid through a non-uniformly shaped channel coated with a charged deformable porous layer, as a model for blood flow through microvessels that are lined with an endothelial glycocalyx layer (EGL). The EGL is negatively charged and electrically interacts with ions dissolved in the blood plasma. The focus here is on the interplay between electrochemical effects, and the pressure-driven flow through the microvessel. To analyse these effects we use triphasic mixture theory (TMT) which describes the coupled dynamics of the fluid phase, the elastic EGL, ion transport within the fluid and electric fields within the microvessel. The resulting equations are solved numerically using a coupled boundary–finite element method (BEM-FEM) scheme. However, in the physiological regime considered here, ion concentrations and electric potentials vary rapidly over a thin transitional region (Debye layer) that straddles the lumen–EGL interface, which is difficult to resolve numerically. Accordingly we analyse this region asymptotically, to determine effective jump conditions across the interface for BEM-FEM computations within the bulk EGL/lumen. Our results demonstrate that ion–EGL electrical interactions can influence the near-wall flow, causing it to become reversed. This alters the stresses exerted upon the vessel wall, which has implications for the hypothesised role of the EGL as a transmitter of mechanical signals from the blood flow to the endothelial vessel surface.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arkill, K. P., Neal, C. R., Mantell, J. M., Michel, C. C., Qvortrup, K., Rostgaard, J., Bates, D. O., Knupp, C. & Squire, J. M. 2012 3d reconstruction of the glycocalyx structure in mammalian capillaries using electron tomography. Microcirculation 19, 343351.CrossRefGoogle ScholarPubMed
Buschmann, M. D. & Grodzinsky, A. J. 1995 A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics. Trans. ASME J. Biomech. Engng 117, 179192.CrossRefGoogle ScholarPubMed
Cox, R. G. 1997 Electroviscous forces on a charged particle suspended in a flowing liquid. J. Fluid Mech. 338, 134.CrossRefGoogle Scholar
Damiano, E. R., Duling, B. R., Ley, K. & Skalak, T. C. 1996 Axisymmetric pressure-driven flow of rigid pellets through a cylindrical tube lined with a deformable porous wall layer. J. Fluid Mech. 314, 163189.CrossRefGoogle Scholar
Damiano, E. R. & Stace, T. M. 2002 A mechano-electrochemical model of radial deformation of the capillary glycocalyx. Biophys. J. 82 (3), 11531175.CrossRefGoogle ScholarPubMed
Damiano, E. R. & Stace, T. M. 2005 Flow and deformation of the capillary glycocalyx in the wake of a leukocyte. Phys. Fluids 17, 031509.CrossRefGoogle Scholar
Dean, D., Seog, J., Ortiz, C. & Grodzinsky, A. J. 2003 Molecular-level theoretical model for electrostatic interactions within polyelectrolyte brushes: applications to charged glycosaminoglycans. Langmuir 19 (13), 55265539.CrossRefGoogle Scholar
Donath, E. & Voigt, A. 1986 Streaming current and streaming potential on structured surfaces. J. Colloid Interface Sci. 109 (1), 122139.CrossRefGoogle Scholar
Ehlers, W. & Blome, P. 2003 A triphasic model for unsaturated soil based on the theory of porous media. Math. Comput. Model. 37, 507513.CrossRefGoogle Scholar
Ehlers, W. & Bluhm, J. 2002 Porous Media: Theory, Experiments and Numerical Applications. Springer.CrossRefGoogle Scholar
Ehlers, W., Karajan, N. & Markert, B. 2009 An extended biphasic model for charged hydrated tissues with application to the intervertebral disc. Biomech. Model. Mechanobiol. 8, 233251.CrossRefGoogle Scholar
Frijns, A. J. H., Huyghe, J. M. & Janssen, J. D. 1997 A validation of the quadriphase mixture theory for intervertebral disc tissue. Intl J. Engng. Sci. 35, 14191429.CrossRefGoogle Scholar
Hariprasad, D. S. & Secomb, T. W. 2012 Motion of red blood cells near microvesselwalls: effects of a porous wall layer. J. Fluid Mech. 705, 195212.CrossRefGoogle ScholarPubMed
Holzapfel, G. A. & Ogden, R. W. 2006 Biomechanics: Trends in Modeling and Simulation. Springer.Google Scholar
Hou, J. S., Holmes, M. H., Lai, W. M. & Mow, V. C. 1989 Boundary conditions at cartilage-synovial fluid interface for joint lubrication and theoretical verifications. Trans. ASME J. Biomech. Engng 111 (1), 7887.CrossRefGoogle ScholarPubMed
Kilic, M. S. & Bazant, M. Z. 2007 Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Phys. Rev. E 75, 021502.Google ScholarPubMed
Kolev, N. 2002 Multiphase Flow Dynamics, Vol 1: Fundamentals. Springer.Google Scholar
Lai, W. M., Hou, J. S. & Mow, V. C. 1991 A triphasic theory for the swelling and deformation behaviors of articular cartilage. Trans. ASME J. Biomech. Engng 113, 245258.CrossRefGoogle ScholarPubMed
Landau, L. D. & Lifshitz, E. M. 1960 Electrodynamics of Continuous Media. Pergamon Press.Google Scholar
Lee, T. C., Long, D. S. & Clarke, R. J. 2016 Effect of endothelial glycocalyx layer redistribution upon microvessel poroelastohydrodynamics. J. Fluid Mech. 798, 812852.CrossRefGoogle Scholar
Liu, M. & Yang, J. 2009 Electrokinetic effect of the endothelial glycocalyx layer on two-phase blood flow in small blood vessels. Microvasc. Res. 78, 1419.CrossRefGoogle ScholarPubMed
Masliyah, J. H. & Bhattacharjee, S. 2006 Electrokinetic and Colloid Transport Phenomena. John Wiley and Sons.CrossRefGoogle Scholar
Mokady, A. J., Mestel, A. J. & Winlove, C. P. 1999 Flow through a charged biopolymer layer. J. Fluid Mech. 383, 353378.CrossRefGoogle Scholar
Oomens, C. W. J., De Heus, H. J., Huyghe, J. M., Nelissen, L. & Janssen, J. D. 1995 Validation of the triphasic mixture theory for a mimic of intervertebral disk tissue. Biomimetics 3, 171185.Google Scholar
Pries, A. R., Secomb, T. W. & Gaehtgens, P. 2000 The endothelial surface layer. Pflügers Arch. 440 (5), 653666.CrossRefGoogle ScholarPubMed
Sawyer, P. N. & Stanczewski, B. 1976 Electrokinetic processes on natural and artificial blood vessels. In Blood Vessels:Problems Arising at the Borders of Natural and Artificial Blood Vessels (ed. Effert, S. & Meyer-Erkelenz, J. D.), pp. 143157. Springer.CrossRefGoogle Scholar
Secomb, T. W., Hsu, R. & Pries, A. R. 1998 A model for red blood cell motion in glycocalyx-lined capillaries. Am. J. Physiol. Heart Circ. Physiol. 274 (3), H1016H1022.CrossRefGoogle Scholar
Secomb, T. W., Hsu, R. & Pries, A. R. 2001 Effect of the endothelial surface layer on transmission of fluid shear stress to endothelial cells. Biorheology 38 (2–3), 143150.Google ScholarPubMed
Sharan, M. & Popel, A. S. 2001 A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall. Biorheology 38, 415428.Google Scholar
Silberberg, A. 1991 Polyelectrolytes at the endothelial cell surface. Biophys. Chem. 41, 913.CrossRefGoogle ScholarPubMed
Squire, J. M., Chew, M., Nneji, G., Neal, C., Barry, J. & Michel, C. 2001 Quasi-periodic substructure in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering? J. Struct. Biol. 136 (3), 239255.CrossRefGoogle ScholarPubMed
Stace, T. M. & Damiano, E. R. 2001 An electrochemical model of the transport of charged molecules through the capillary glycocalyx. Biophys. J. 80, 16701690.CrossRefGoogle ScholarPubMed
Sumets, P. P., Cater, J. E., Long, D. S. & Clarke, R. J. 2015 A boundary-integral representation for biphasic mixture theory, with application to the post-capillary glycocalyx. Proc. R. Soc. Lond. A 471 (2179), doi:10.1098/rspa.2014.0955.Google Scholar
Tarbell, J. M. & Pahakis, M. Y. 2006 Mechanotransduction and the glycocalyx. J. Intl Med. 259 (4), 339350.CrossRefGoogle ScholarPubMed
Vincent, P. E., Sherwin, S. J. & Weinberg, P. D. 2010 The effect of the endothelial glycocalyx layer on concentration polarisation of low density lipoproteins in arteries. J. Theor. Biol. 265 (1), 117.CrossRefGoogle ScholarPubMed
Wei, H. H., Waters, S. L., Liu, S. Q. & Grotberg, J. B. 2003 Flow in a wavy-walled channel lined with a poroelastic layer. J. Fluid Mech. 492, 2345.CrossRefGoogle Scholar
Weinbaum, S., Tarbell, J. M. & Damiano, E. R. 2007 The structure and function of the endothelial glycocalyx layer. Annu. Rev. Biomed. Engng 9, 121167.CrossRefGoogle ScholarPubMed
Yariv, E., Schnitzer, O. & Frankel, I. 2011 Streaming-potential phenomena in the thin-debye-layer limit. Part 1. General theory. J. Fluid Mech. 685, 306334.CrossRefGoogle Scholar
Zhou, X., Hon, Y. C., Sun, S. & Mak, A. F. T. 2002 Numerical simulation of the steady-state deformation of a smart hydrogel under an external electric field. Smart Mater. Struct. 11, 459467.CrossRefGoogle Scholar