Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-08T04:13:18.712Z Has data issue: false hasContentIssue false

Effects of surfactant on propagation and rupture of a liquid plug in a tube

Published online by Cambridge University Press:  10 June 2019

M. Muradoglu*
Affiliation:
Department of Mechanical Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey
F. Romanò
Affiliation:
Department of Biomedical Engineering, University of Michigan, 2123 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109-2099, USA
H. Fujioka
Affiliation:
Center for Computational Science, Tulane University, 6823 St Charles Avenue, New Orleans, LA 70118, USA
J. B. Grotberg
Affiliation:
Department of Biomedical Engineering, University of Michigan, 2123 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109-2099, USA
*
Email address for correspondence: [email protected]

Abstract

Surfactant-laden liquid plug propagation and rupture occurring in lower lung airways are studied computationally using a front-tracking method. The plug is driven by an applied constant pressure in a rigid axisymmetric tube whose inner surface is coated by a thin liquid film. The evolution equations of the interfacial and bulk surfactant concentrations coupled with the incompressible Navier–Stokes equations are solved in the front-tracking framework. The numerical method is first validated for a surfactant-free case and the results are found to be in good agreement with the earlier simulations of Fujioka et al. (Phys. Fluids, vol. 20, 2008, 062104) and Hassan et al. (Intl J. Numer. Meth. Fluids, vol. 67, 2011, pp. 1373–1392). Then extensive simulations are performed to investigate the effects of surfactant on the mechanical stresses that could be injurious to epithelial cells, such as pressure and shear stress. It is found that the liquid plug ruptures violently to induce large pressure and shear stress on airway walls and even a tiny amount of surfactant significantly reduces the pressure and shear stress and thus improves cell survivability. However, addition of surfactant also delays the plug rupture and thus airway reopening.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afzali, S., Rezaei, N. & Zendehboudi, S. 2018 A comprehensive review on enhanced oil recovery by water alternating gas (WAG) injection. Fuel 227, 218246.Google Scholar
Agrawal, M. L. & Neuman, R. D. 1988 Surface diffusion in monomolecular films. II. Experiment and theory. J. Colloid Interface Sci. 121, 366379.Google Scholar
Baker, C. S., Evans, T. W., Randle, B. J. & Haslam, P. L. 1999 Damage to surfactant-specific protein in acute respiratory distress syndrome. Lancet 353, 12321237.Google Scholar
Bian, S., Tai, C. F., Halpern, D., Zheng, Y. & Grotberg, J. B. 2010 Experimental study of flow fields in an airway closure model. J. Fluid Mech. 647, 391402.Google Scholar
Bilek, A. M., Dee, K. C. & Gaver, D. P. 2003 Mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening. J. Appl. Physiol. 94, 770783.Google Scholar
Borges, R., Carmona, M., Costa, B. & Don, W. 2013 An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 110, 859864.Google Scholar
Bretherton, F. P. 1961 The motion of long bubbles in tubes. J. Fluid Mech. 10, 166188.Google Scholar
Burger, E. J. & Macklem, P. 1968 Airway closure: demonstration by breathing 100 per cent O2 at low lung volumes and by N2 washout. J. Appl. Physiol. 25, 139148.Google Scholar
Chern, I. L., Glimm, J., McBryan, O., Plohr, B. & Yaniv, S. 1986 Front tracking for gas dynamics. J. Comput. Phys. 62, 83110.Google Scholar
Clements, J. 1962 Surface tension in the lungs. Sci. Am. 207, 119128.Google Scholar
Clements, J. 1997 Surface tension in the lungs. Annu. Rev. Physiol. 59, 121.Google Scholar
Crystal, R. G. 1997 The Lung: Scientific Foundations. Lippincott.Google Scholar
Dimakopoulos, Y. & Tsamopoulos, J. 2003 Transient displacement of a viscoplastic material by air in straight and suddenly constricted tubes. J. Non-Newtonian Fluid Mech. 112, 4375.Google Scholar
Fairbrother, F. & Stubbs, A. E. 1935 Studies in electro-endosmosis. Part VI. The ‘bubble-tube’ method of measurement. J. Chem. Soc. 119, 527529.Google Scholar
Frumkin, A. A. & Levich, V. G. 1947 On surfactants and interfacial motion. Zh. Fiz. Khim. 21, 11831204.Google Scholar
Fujioka, H. & Grotberg, J. B. 2004 Steady propagation of a liquid plug in a two-dimensional channel. Trans. ASME J. Biomech. Engng 126, 567577.Google Scholar
Fujioka, H. & Grotberg, J. B. 2005 The steady propagation of a surfactant-laden liquid plug in a two dimensional channel. Phys. Fluids 17, 082102.Google Scholar
Fujioka, H., Takayama, S. & Grotberg, J. B. 2008 Unsteady propagation of a liquid plug in a liquid-lined straight tube. Phys. Fluids 20, 062104.Google Scholar
Ghadiali, S. N. & Gaver, D. P. 2000 An investigation of pulmonary surfactant physicochemical behavior under airway reopening conditions. J. Appl. Physiol. 88 (2), 493506.Google Scholar
Ghadiali, S. N. & Gaver, D. P. 2003 The influence of non-equilibrium surfactant dynamics on the flow of a semi-infinite bubble in a rigid cylindrical capillary tube. J. Fluid Mech. 478, 165196.Google Scholar
Glimm, J., Graham, M. J., Grove, J., Li, X. L., Smith, T. M., Tan, D., Tangerman, F. & Zhang, Q. 1998 Front tracking in two and three dimensions. Comput. Maths Applics. 35, 111.Google Scholar
Glindmeyer, H. W., Smith, B. J. & Gaver, D. P. 2012 In situ enhancement of pulmonary surfactant function using temporary flow reversal. J. Appl. Physiol. 112 (1), 149158.Google Scholar
Goerker, J. 1998 A captive bubble method reproduces the in situ behavior of lung surfactant monolayers. Biochim. Biophys. Acta 1408, 7989.Google Scholar
Gounley, J., Boedec, G., Jaeger, M. & Leonetti, M. 2016 Influence of surface viscosity on droplets in shear flow. J. Fluid Mech. 791, 464494.Google Scholar
Griese, M., Essl, R., Schmidt, R., Rietschel, E., Ratjen, F., Ballmann, M. & Paul, K. 2004 Pulmonary surfactant, lung function, and endobronchial inflammation in cystic fibrosis. Am. J. Respir. Crit. Care 170, 10001005.Google Scholar
Grotberg, J. B. 1994 Pulmonary flow and transport phenomena. Annu. Rev. Fluid Mech. 26, 529571.Google Scholar
Grotberg, J. B. 2011 Respiratory fluid mechanics. Phys. Fluids 23, 021301.Google Scholar
Grotberg, J. B. 2019 Crackles and wheezes: agents of injury? Annu. Am. Thorac. Soc. (submitted) doi:10.1513/AnnalsATS.201901-022IP.Google Scholar
Gunther, A., Siebert, C., Schmidt, R., Ziegler, S., Grimminger, F., Yabut, M., Temmesfeld, B., Walmrath, D., Morr, H. & Seeger, W. 1996a Surfactant abnormalities in infants with severe viral bronchiolitis. Arch. Dis. Child. 75, 133136.Google Scholar
Gunther, A., Siebert, C., Schmidt, R., Ziegler, S., Grimminger, F., Yabut, M., Temmesfeld, B., Walmrath, D., Morr, H. & Seeger, W. 1996b Surfactant alterations in severe pneumonia, acute respiratory distress syndrome, and cardiogenic lung edema. Am. J. Respir. Crit. Care 153, 176184.Google Scholar
Hall, S. B., Venkitaraman, A. R., Whitsett, J. A., Holm, B. A. & Notter, R. H. 1992 Importance of hydrophobic apoproteins as constituents of clinical exogenous surfactants. Am. Rev. Respir. Dis. 145, 2430.Google Scholar
Halpern, D. & Grotberg, J. B. 1992 Fluid-elastic instabilities of liquid-lined flexible tubes. J. Fluid Mech. 244, 615632.Google Scholar
Halpern, D. & Grotberg, J. B. 1993 Surfactant effects on fluid-elastic instabilities of liquid-lined flexible tubes: a model of airway closure. Trans. ASME J. Biomech. Engng 115, 271277.Google Scholar
Harlow, F. H. & Welch, J. E. 1965 Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 21822189.Google Scholar
Hassan, E. A., Uzgoren, E., Fujioka, H., Grotberg, J. B. & Shyy, W. 2011 Adaptive Lagrangian–Eulerian computation of propagation and rupture of a liquid plug in a tube. Intl J. Numer. Meth. Fluids 67, 13731392.Google Scholar
Hazel, A. L. & Heil, M. 2003 Three-dimensional airway reopening: the steady propagation of a semi-infinite bubble into a buckled elastic tube. J. Fluid Mech. 478, 4770.Google Scholar
Heil, M. & Hazel, A. L. 2011 Fluid–structure interaction in internal physiological flows. Annu. Rev. Fluid Mech. 43, 141162.Google Scholar
Hogg, J. C., Chu, F., Utokaparch, S., Woods, R., Elliott, W. M., Buzatu, L., Cherniack, R. M., Rogers, R. M., Sciurba, F. C., Coxson, H. O. et al. 2004 The nature of small-airway obstruction in chronic obstructive pulmonary disease. N. Engl. J. Med. 350, 26452653.Google Scholar
Hughes, J. M., Rosenzweig, D. Y. & Kivitz, P. B. 1970 Site of airway closure in excised dog lungs: histologic demonstration. J. Appl. Physiol. 29, 340344.Google Scholar
Huh, D., Fujioka, H., Tung, Y. C., Futai, N., Paine, R., Grotberg, J. B. & Takayama, S. 2007 Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc. Natl Acad. Sci. USA 104, 1888618891.Google Scholar
Irandoust, S. & Andersson, B. 1988 Mass-transfer and liquid-phase reaction in a segmented two-phase flow monolithic catalyst reactor. Chem. Engng Sci. 43, 19831988.Google Scholar
Irfan, M. & Muradoglu, M. 2017 A front tracking method for direct numerical simulation of evaporation process in a multiphase system. J. Comput. Phys. 337, 132153.Google Scholar
Jensen, O. E., Halpern, D. & Grotberg, J. B. 1994 Transport of a passive solute by surfactant-driven flows. Chem. Engng Sci. 85, 11071117.Google Scholar
Kamm, R. D. & Schroter, R. C. 1989 Is airway-closure caused by a liquid-film instability? Respir. Physiol. 75, 141156.Google Scholar
Kay, S. S., Bilek, A. M., Dee, K. C. & Gaver, D. P. 2004 Pressure gradient, not exposure duration, determines the extent of epithelial cell damage in a model of pulmonary airway reopening. J. Appl. Physiol. 97, 269276.Google Scholar
Kreutzer, M. T., Kapteijn, F., Moulijn, J. A. & Heiszwolf, J. J. 2005 Multiphase monolith reactors: chemical reaction engineering of segmented flow in microchannels. Chem. Engng Sci. 60, 58955916.Google Scholar
Ladosz, A., Rigger, E. & von Rohr, P. R. 2016 Pressure drop of three-phase liquid–liquid–gas slug flow in round microchannels. Microfluid. Nanofluid. 20, 49.Google Scholar
Launois-Surpas, M.A., Ivanova, T., Panaiotov, I., Proust, J.E., Puisieux, F. & Georgiev, G. 1992 Behavior of pure and mixed DPPC liposomes spread or adsorbed at the air–water interface. Colloid Polym. Sci. 270, 901911.Google Scholar
Meban, C. 1978 Surface viscosity of surfactant films from human lungs. Res. Physiol. 33 (2), 219227.Google Scholar
Mukundakrishnan, K., Ayyaswamy, P. S. & Eckmann, D. M. 2009 Bubble motion in a blood vessel: shear stress induced endothelial cell injury. Trans. ASME J. Biomech. Engng 131, 074516.Google Scholar
Muradoglu, M. & Stone, H. A. 2007 Motion of large bubbles in curved channels. J. Fluid Mech. 570, 455466.Google Scholar
Muradoglu, M. & Tryggvason, G. 2008 A front-tracking method for computation of interfacial flows with soluble surfactants. J. Comput. Phys. 227, 22382262.Google Scholar
Muradoglu, M. & Tryggvason, G. 2014 Simulations of soluble surfactants in 3D multiphase flow. J. Comput. Phys. 274, 737757.Google Scholar
Muscedere, J. G., Mullen, J. B., Gan, K. & Slutsky, A. S. 1994 Tidal ventilation at low airway pressures can augment lung injury. Am. J. Respir. Crit. Care Med. 149, 13271334.Google Scholar
Naire, S. & Jensen, O. E. 2005 Epithelial cell deformation during surfactant-mediated airway reopening: a theoretical model. J. Appl. Physiol. 99 (2), 458471.Google Scholar
Olgac, U., Kayaalp, A. D. & Muradoglu, M. 2006 Buoyancy-driven motion and breakup of viscous drops in constricted capillaries. Intl J. Multiphase Flow 32, 10551071.Google Scholar
Olgac, U. & Muradoglu, M. 2013a Computational modeling of unsteady surfactant-laden liquid plug propagation in neonatal airways. Phys. Fluids 25, 071901.Google Scholar
Olgac, U. & Muradoglu, M. 2013b Effects of surfactant on liquid film thickness in the Bretherton problem. Intl J. Multiphase Flow 48, 5870.Google Scholar
Otis, D. R., Ingenito, E. P., Kamm, R. D. & Johnson, M. 1994 Dynamic surface tension of surfactant TA: experiments and theory. J. Appl. Physiol. 77, 26812688.Google Scholar
Peskin, C. 1977 Numerical analysis of blood flow in the heart. J. Comput. Phys. 25, 220252.Google Scholar
Piirila, P. & Sovijarvi, A. R. A. 1995 Crackles: recording, analysis and clinical significance. Eur. Respir. J. 8, 21392148.Google Scholar
Rudiger, M., Tolle, A., Meier, W. & Rustow, B. 2005 Naturally derived commercial surfactants differ in composition of surfactant lipids and in surface viscosity. Am. J. Physiol. Lung Cell Mol. Physiol. 288, L379L383.Google Scholar
Schurch, S., Bachofen, H., Goerke, J. & Possmayer, F. 1989 A captive bubble method reproduces the in situ behavior of lung surfactant monolayers. J. Appl. Physiol. 67, 23892396.Google Scholar
Shaffer, T. H. & Wolfson, M. R. 1996 Liquid ventilation: an alternative ventilation strategy for management of neonatal respiratory distress. Eur. J. Pediatrics 155, S30S34.Google Scholar
Shin, S. & Juric, D. 2002 Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity. J. Comput. Phys. 180, 427470.Google Scholar
Soligo, G., Roccon, A. & Soldati, A. 2019 Coalescence of surfactant-laden drops by phase field method. J. Comput. Phys. 376, 12921311.Google Scholar
Stevens, T. & Sinkin, R. A. 2007 Surfactant replacement therapy. Chest 131, 15771582.Google Scholar
Stone, H. A. 1990 A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface. Phys. Fluids A 2, 111112.Google Scholar
Stone, H. A., Stroock, A. D. & Ajdari, A. 2004 Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381411.Google Scholar
Tai, C. F., Bian, S., Halpern, D., Zheng, Y., Filoche, M. & Grotberg, J. B. 2011 Numerical study of flow fields in an airway closure model. J. Fluid Mech. 677, 483502.Google Scholar
Taskar, V., John, J., Evander, E., Robertson, B. & Jonson, B. 1997 Surfactant dysfunction makes lungs vulnerable to repetitive collapse and reexpansion. Am. J. Respir. Crit. Care 155, 313320.Google Scholar
Tasoglu, S., Demirci, U. & Muradoglu, M. 2008 The effect of soluble surfactant on the transient motion of a buoyancy-driven bubble. Phys. Fluids 20, 040805.Google Scholar
Tavana, H., Zamankhan, P., Christensen, P. J., Grotberg, J. B. & Takayama, H. 2011 Epithelium damage and protection during reopening of occluded airways in a physiologic microfluidic pulmonary airway model. Biomed. Microdevices 13, 731742.Google Scholar
Taylor, G. I. 1961 Deposition of a viscous fluid on the wall of a tube. J. Fluid Mech. 10, 161165.Google Scholar
Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S. & Jan, Y.-J. 2001 A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169, 708759.Google Scholar
Tryggvason, G., Scardovelli, R. & Zaleski, S. 2011 Direct Numerical Simulations of Gas–Liquid Multiphase Flows. Cambridge University Press.Google Scholar
Unverdi, S. O. & Tryggvason, G. 1992 A front-tracking method for viscous incompressible multiphase flows. J. Comput. Phys. 100, 2537.Google Scholar
Yalcin, H. C., Perry, S. F. & Ghadiali, S. N. 2007 Influence of airway diameter and cell confluence on epithelial cell injury in an in vitro model of airway reopening. J. Appl. Physiol. 103, 17961807.Google Scholar
Yu, J. W. & Chien, Y. W. 1997 Pulmonary drug delivery: physiologic and mechanistic aspects. Crit. Rev. Ther. Drug. Carrier Syst. 14, 395453.Google Scholar
Zell, Z. A., Nowbahar, A., Mansard, V., Leala, L. G., Deshmukh, S. S., Mecca, J. M., Tucker, C. J. & Squires, T. M. 2014 Surface shear inviscidity of soluble surfactants. Proc. Natl Acad. Sci. USA 11 (10), 36773682.Google Scholar
Zheng, Y., Fujioka, H. & Grotberg, J. B. 2007 Effects of gravity, inertia, and surfactant on steady plug propagation in a two-dimensional channel. Phys. Fluids 19, 082107.Google Scholar