Published online by Cambridge University Press: 19 April 2006
Mean velocity profiles, turbulence intensity distributions and streamwise energy spectra are presented for turbulent air flow in a smooth-walled, high aspect ratio rectangular duct with small streamwise curvature, and are compared with measurements taken in a similar straight duct.
The results for the present curved flow are found to differ significantly from those for the more highly curved flows reported previously, and suggest the need to distinguish between ‘shear-dominated’ flows with small curvature and ‘inertia-dominated’ flows with high curvature. Velocity defect and angular-momentum defect hypotheses fail to correlate the central-region mean flow data, but the wall-region data are consistent with the conventional straight-wall similarity hypothesis. A secondary flow of Taylor–Goertler vortex pattern is found to occur in the central flow region.
An examination of the flow equations yields a model for the mechanisms by which streamline curvature affects turbulent flow, in which a major effect is a direct change in the turbulent shear stress through a conservative reorientation of the turbulence intensity components. Data for the streamwise and transverse turbulence intensities show behaviour consistent with that expected from the equations, and the distribution of total turbulence energy in the central flow region is found to be nearly invariant with Reynolds number and wall curvature, in agreement with the model.
Energy spectra for the streamwise component are examined in terms of a Townsend-type two-component turbulence model. They indicate that a universal, ‘active’ component exists in all flow regions, with an ‘inactive’ component which affects only the low wavenumber spectra intensities. This is taken to imply that the effects of streamline curvature are determined by the central-region flow structure alone.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.